Systems and methods for self-supervised learning of camera intrinsic parameters from a sequence of images
Abstract:
Systems and methods described herein relate to self-supervised learning of camera intrinsic parameters from a sequence of images. One embodiment produces a depth map from a current image frame captured by a camera; generates a point cloud from the depth map using a differentiable unprojection operation; produces a camera pose estimate from the current image frame and a context image frame; produces a warped point cloud based on the camera pose estimate; generates a warped image frame from the warped point cloud using a differentiable projection operation; compares the warped image frame with the context image frame to produce a self-supervised photometric loss; updates a set of estimated camera intrinsic parameters on a per-image-sequence basis using one or more gradients from the self-supervised photometric loss; and generates, based on a converged set of learned camera intrinsic parameters, a rectified image frame from an image frame captured by the camera.
Information query
Patent Agency Ranking
0/0