Methods and systems for semantic segmentation of a point cloud
Abstract:
Systems, methods and apparatus for sematic segmentation of 3D point clouds using deep neural networks. The deep neural network generally has two primary subsystems: a multi-branch cascaded subnetwork that includes an encoder and a decoder, and is configured to receive a sparse 3D point cloud, and capture and fuse spatial feature information in the sparse 3D point cloud at multiple scales and multi hierarchical levels; and a spatial feature transformer subnetwork that is configured to transform the cascaded features generated by the multi-branch cascaded subnetwork and fuse these scaled features using a shared decoder attention framework to assist in the prediction of sematic classes for the sparse 3D point cloud.
Public/Granted literature
Information query
Patent Agency Ranking
0/0