Method of unsupervised domain adaptation in ordinal regression
Abstract:
A method of jointly training of a transferable feature extractor network, an ordinal regressor network, and an order classifier network in an ordinal regression unsupervised domain adaption network by providing a source of labeled source images and unlabeled target images; outputting image representations from a transferable feature extractor network by performing a minimax optimization procedure on the source of labeled source images and unlabeled target images; training a domain discriminator network, using the image representations from the transferable feature extractor network, to distinguish between source images and target images; training an ordinal regressor network using a full set of source images from the transferable feature extractor network; and training an order classifier network using a full set of source images from said transferable feature extractor network.
Public/Granted literature
Information query
Patent Agency Ranking
0/0