Locating a decision boundary for complex classifier
Abstract:
Systems and methods improve performance of a classifier, which comprises a neural network and is trained through machine learning. First and second scores are computed, by the classifier, for each a multiple data examples from a generator. The first score is indicative of whether the data example belongs to a first data cluster and the second score is indicative of whether the data example belongs to a second data cluster. The generator is trained with an objective such that, for each data example generated by the generator, the first and second scores computed by the classifier are equal. Partial derivatives from the classifier are back-propagated for multiple data examples generated by the generator, to obtain a vector, for each data example, that is orthogonal to a decision surface for the classifier. A problem with the classifier is detected based on changes in directions of the vectors. Upon detecting a problem, the classifier is adjusted to reduce errors by the classifier caused by overfitting training data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0