Systems, methods, and apparatuses for generating pre-trained models for nnU-net through the use of improved transfer learning techniques
Abstract:
Described herein are means for generating pre-trained models for nnU-Net through the use of improved transfer learning techniques, in which the pre-trained models are then utilized for the processing of medical imaging. According to a particular embodiment, there is a system specially configured for segmenting medical images, in which such a system includes: a memory to store instructions; a processor to execute the instructions stored in the memory; wherein the system is specially configured to: execute instructions via the processor for executing a pre-trained model from Models Genesis within a nnU-Net framework; execute instructions via the processor for learning generic anatomical patterns within the executing Models Genesis through self-supervised learning; execute instructions via the processor for transforming an original image using distortion and cutout-based methods; execute instructions via the processor for learning the reconstruction of the original image from the transformed image using an encoder-decoder architecture of the nnU-Net framework to identify the generic anatomical representation from the transformed image by recovering the original image; and wherein architecture determined by the nnU-Net framework is utilized with Models Genesis and is trained to minimize the L2 distance between the prediction and ground truth. Other related embodiments are disclosed.
Information query
Patent Agency Ranking
0/0