METHOD FOR CALIBRATING DAILY PRECIPITATION FORECAST BY USING BERNOULLI-GAMMA-GAUSSIAN DISTRIBUTION
Abstract:
The present disclosure provides a method for calibrating daily precipitation forecast by using a Bernoulli-Gamma-Gaussian distribution, including the following steps: acquiring daily raw forecast data and observed data; using a Bernoulli distribution to perform precipitation occurrence analysis; using a Gamma distribution to perform precipitation amount analysis on the data that precipitation occurs; using a Gaussian distribution to perform normal transformation on the raw forecast data and the observed data according to the analysis results of the Bernoulli distribution and the Gamma distribution, and obtaining corresponding normalized variables; constructing a bivariate joint normal distribution; constructing a conditional probability distribution of a predictand; and determining whether a forecast to be calibrated is that a precipitation event occurs, determining a conditional probability distribution parameter of the predictand, then randomly sampling the conditional probability distribution of the predictand, and finally obtaining the calibrated forecast by means of inverse normal quantile transform.
Information query
Patent Agency Ranking
0/0