SYSTEMS AND METHODS FOR DEEP RECOMMENDATIONS USING SIGNATURE ANALYSIS
Abstract:
Systems and methods are described herein for providing content item recommendations based on a video. Using feature vectors corresponding to at least one frame of a video (e.g., generated based on texture and shape intensity of a frame), a recommendation system improves content recommendation using analytic and quantitative characteristics derived from a frame of a content item rather than merely manually labeled bibliographic data (e.g., a genre or producer). The recommendation system may generate a feature vector based on a texture, a shape intensity (e.g., generated from a Generalized Hough Transform), and temporal data corresponding to at least one frame of a video. The feature vector is analyzed using a machine learning model (e.g., a neural network) to produce a machine learning model output. The recommendation system causes a recommended content item to be provided based on the machine learning model output.
Public/Granted literature
Information query
Patent Agency Ranking
0/0