USING UNSUPERVISED MACHINE LEARNING TO PRODUCE INTERPRETABLE ROUTING RULES
Abstract:
Embodiments of the disclosure relate to systems and methods for leveraging unsupervised machine learning to produce interpretable routing rules. In various embodiments, a training dataset comprising a plurality of data records is created. The plurality of data records includes message data comprising a plurality of messages and action data comprising a plurality of actions that correspond to the plurality of messages. A first machine learning model is trained using the training dataset. The first machine learning model as trained provides cluster data that indicates, for each data record of the plurality of data records of the training dataset, membership in a cluster of a plurality of clusters. An enhanced training dataset is created that comprises the message data from the training dataset, the action data from the training dataset, and the cluster data. A set of second machine learning models is trained using the enhanced training dataset, each respective second machine learning model of the set of second machine learning models providing a decision tree of a plurality of decision trees and corresponding to a distinct cluster of the plurality of clusters. Rules can be extracted from each decision tree of the plurality of decision trees and used as a basis for creating and transmitting alerts based on incoming messages.
Information query
Patent Agency Ranking
0/0