Process of constructing oxidation-reduction nanomedicine quantum dots room temperature quantum bit networks
Abstract:
Preparation of oxidation-reduction (redox) nano-medicine quantum dot room temperature superconductor quantum bit (qubit) networks includes processes of making unitary, binary, ternary, an d/or quaternary liquid pharmaceutical ingredients of an antioxidase antioxidant, a β-adrenergic receptor agonist, a P2-purinergic receptor agonist, and/or a phenylalkylamine calcium channel blocker in combination with either 1:20 xanthine oxidase (XO):xanthine (X) or X alone in a liquid phase by using the L16(2)15 and L9(3)4 orthogonal optimization design protocols and modulating spatial distance constraint from about 0.1 Å to about 200 Å as well as a 10 class clean bottom-up self-assembly approach. Redox nano-drug quantum dot superconductor qubit network can be identified at room temperature by Planck constant (ℏ)-related qubit metrology of electron spins and polaritons (the quantum state of photon-exciton hybrid or photoelectron coupling/co-tunneling) through conducting atomic force microscopy (C-AFM) and/or laser micro-photoluminescence (PL) spectrum standard measurement method, wherein ℏ-related quantum continuous variables (QCVs) are derived from faster Fourier transformation (FFT) of average current-voltage (I-V) curves and PL spectra, their first derivatives of relative phases in frequency and time domains (dr/df=ΔE/ℏ and dr/dt=ΔE/ℏ) and their FFTs to acquire Σ(2n), Σ(2n·2n), Σ(2n+1), Σ(2n·2n), Σ(22n+1·22n+1) and/or Σ(22n+1) binary superconductor qubit matrix networks. Uses of this invention cover room temperature superconductor (resistance loss, insulator with conductor or ∞ conductance) quantum devices and quantum biology metrology, implanted nano-drug quantum dot diagnostic and therapeutic nanodevices and/or nano-bio-electrochemistry sensors with target-recognized functions.
Information query
Patent Agency Ranking
0/0