Invention Grant
US08504502B2 Prediction by single neurons 有权
单神经元预测

Prediction by single neurons
Abstract:
Associative plasticity rules are described to control the strength of inputs to an artificial neuron. Inputs to a neuron consist of both synaptic inputs and non-synaptic, voltage-regulated inputs. The neuron's output is voltage. Hebbian and anti-Hebbian-type plasticity rules are implemented to select amongst a spectrum of voltage-regulated inputs, differing in their voltage-dependence and kinetic properties. An anti-Hebbian-type rule selects inputs that predict and counteract deviations in membrane voltage, thereby generating an output that corresponds to a prediction error. A Hebbian-type rule selects inputs that predict and amplify deviations in membrane voltage, thereby contributing to pattern generation. In further embodiments, Hebbian and anti-Hebbian-type plasticity rules are also applied to synaptic inputs. In other embodiments, reward information is incorporated into Hebbian-type plasticity rules. It is envisioned that by following these plasticity rules, single neurons as well as networks may predict and maximize future reward.
Public/Granted literature
Information query
Patent Agency Ranking
0/0