Invention Grant
US08532399B2 Large scale image classification 有权
大规模图像分类

Large scale image classification
Abstract:
An input image representation is generated based on an aggregation of local descriptors extracted from an input image, and is adjusted by performing a power normalization, an Lp normalization such as an L2 normalization, or both. In some embodiments the generating comprises modeling the extracted local descriptors using a probabilistic model to generate the input image representation comprising probabilistic model component values for a set of probabilistic model components. In some such embodiments the probabilistic model comprises a Gaussian mixture model and the probabilistic model components comprise Gaussian components of the Gaussian mixture model. The generating may include partitioning the input image into a plurality of image partitions using a spatial pyramids partitioning model, extracting local descriptors, such as Fisher vectors, from the image partitions, and concatenating the local descriptors extracted from the image partitions.
Public/Granted literature
Information query
Patent Agency Ranking
0/0