Invention Grant
US08548198B2 Identifying anomalous object types during classification 有权
在分类期间识别异常对象类型

Identifying anomalous object types during classification
Abstract:
Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.
Public/Granted literature
Information query
Patent Agency Ranking
0/0