Invention Grant
US08719212B2 Parallel kinematic machine trajectory planning method 有权
平行运动机轨迹规划方法

Parallel kinematic machine trajectory planning method
Abstract:
The parallel kinematic machine (PKM) trajectory planning method is operable via a data-driven neuro-fuzzy multistage-based system. Offline planning based on robot kinematic and dynamic models, including actuators, is performed to generate a large dataset of trajectories, covering most of the robot workspace and minimizing time and energy, while avoiding singularities and limits on joint angles, rates, accelerations and torques. The method implements an augmented Lagrangian solver on a decoupled form of the PKM dynamics in order to solve the resulting non-linear constrained optimal control problem. Using outcomes of the offline-planning, the data-driven neuro-fuzzy inference system is built to learn, capture to and optimize the desired dynamic behavior of the PKM. The optimized system is used to achieve near-optimal online planning with a reasonable time complexity. The effectiveness of the method is illustrated through a set of simulation experiments proving the technique on a 2-degrees of freedom planar PKM.
Public/Granted literature
Information query
Patent Agency Ranking
0/0