Invention Grant
US08811701B2 Systems and method for automatic prostate localization in MR images using random walker segmentation initialized via boosted classifiers
有权
使用通过增强分类器初始化的随机步行器分割的MR图像中的自动前列腺定位的系统和方法
- Patent Title: Systems and method for automatic prostate localization in MR images using random walker segmentation initialized via boosted classifiers
- Patent Title (中): 使用通过增强分类器初始化的随机步行器分割的MR图像中的自动前列腺定位的系统和方法
-
Application No.: US13291615Application Date: 2011-11-08
-
Publication No.: US08811701B2Publication Date: 2014-08-19
- Inventor: Parmeshwar Khurd , Leo Grady , Ali Kamen , Mamadou Diallo , Kalpitkumar Gajera , Peter Gall , Martin Requardt , Berthold Kiefer , Clifford R. Weiss
- Applicant: Parmeshwar Khurd , Leo Grady , Ali Kamen , Mamadou Diallo , Kalpitkumar Gajera , Peter Gall , Martin Requardt , Berthold Kiefer , Clifford R. Weiss
- Applicant Address: DE Munich
- Assignee: Siemens Aktiengesellschaft
- Current Assignee: Siemens Aktiengesellschaft
- Current Assignee Address: DE Munich
- Main IPC: G06K9/00
- IPC: G06K9/00 ; G06K9/34

Abstract:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
Public/Granted literature
Information query