Invention Grant
US09037460B2 Dynamic long-distance dependency with conditional random fields 有权
动态长距离依赖条件随机场

Dynamic long-distance dependency with conditional random fields
Abstract:
Dynamic features are utilized with CRFs to handle long-distance dependencies of output labels. The dynamic features present a probability distribution involved in explicit distance from/to a special output label that is pre-defined according to each application scenario. Besides the number of units in the segment (from the previous special output label to the current unit), the dynamic features may also include the sum of any basic features of units in the segment. Since the added dynamic features are involved in the distance from the previous specific label, the searching lattice associated with Viterbi searching is expanded to distinguish the nodes with various distances. The dynamic features may be used in a variety of different applications, such as Natural Language Processing, Text-To-Speech and Automatic Speech Recognition. For example, the dynamic features may be used to assist in prosodic break and pause prediction.
Public/Granted literature
Information query
Patent Agency Ranking
0/0