Invention Grant
US09177262B2 Method of automated discovery of new topics 有权
自动发现新主题的方法

Method of automated discovery of new topics
Abstract:
The present disclosure relates to a method for performing automated discovery of new topics from unlimited documents related to any subject domain, employing a multi-component extension of Latent Dirichlet Allocation (MC-LDA) topic models, to discover related topics in a corpus. The resulting data may contain millions of term vectors from any subject domain identifying the most distinguished co-occurring topics that users may be interested in, for periodically building new topic ID models using new content, which may be employed to compare one by one with existing model to measure the significance of changes, using term vectors differences with no correlation with a Periodic New Model, for periodic updates of automated discovery of new topics, which may be used to build a new topic ID model in-memory database to allow query-time linking on massive data-set for automated discovery of new topics.
Public/Granted literature
Information query
Patent Agency Ranking
0/0