Invention Grant
US09594747B2 Generation of a semantic model from textual listings 有权
从文字列表生成语义模型

Generation of a semantic model from textual listings
Abstract:
A corpus of textual listings is received and main concept words and attribute words therein are identified via an iterative process of parsing listings and expanding a semantic model. During the parsing phase, the corpus of textual listings is parsed to tag one or more head noun words and/or one or more identifier words in each listing based on previously identified main concept words or using a head noun identification rule. Once substantially each listing in the corpus has been parsed in this manner, the expansion phase assigns head noun words as main concept words and modifier words as attribute words, where possible. During the next iteration, the newly identified main concept words and/or attribute words are used to further parse the listings. These iterations are repeated until a termination condition is reached. Remaining words in the corpus are clustered based on the main concept words and attribute words.
Public/Granted literature
Information query
Patent Agency Ranking
0/0