Learning a ranking model using interactions of a user with a jobs list
Abstract:
Learning to rank modeling in the context of an on-line social network is described. A learning to rank model can learn from pairwise preference (e.g., job posting A is more relevant than job posting B for a particular member profile) thus directly optimizing for the rank order of job postings for each member profile. With ranking position taken into consideration during training, top-ranked job postings may be treated by a recommendation system as being of more importance than lower-ranked job postings. In addition, a learning to rank approach may also result in an equal optimization across all member profiles and help minimize bias towards those member profiles that have been paired with a larger number of job postings.
Public/Granted literature
Information query
Patent Agency Ranking
0/0