Wavelength-tunable vertical cavity surface emitting laser for swept source optical coherence tomography system
Abstract:
A wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) with the use of microelectromechanical system (MEMS) technology is provided as a swept source for Optical Coherence Tomography (OCT). The wavelength-tunable VCSEL comprises a bottom mirror of the VCSEL, an active region, and a MEMS tunable upper mirror movable by electrostatic deflections. The bottom mirror comprising a GaAs based distributed Bragg reflector (DBR) stack, and the active region comprising multiple stacks of GaAs based quantum dot (QD) layers, are epitaxially grown on a GaAs substrate. The MEMS tunable upper mirror includes a membrane part supported by suspension beams, and an upper mirror comprising a dielectric DBR stack. The MEMS tunable quantum dots VCSEL can cover an operating wavelength range of more than 100 nm, preferably with a center wavelength between 250 and 1950 nm, and the sweeping rate can be from a few kHz to hundreds of kHz, and up to a few MHz.
Information query
Patent Agency Ranking
0/0