Duplication and deletion detection using transformation processing of depth vectors
Abstract:
Techniques for accurately identifying duplications and deletions using depth vectors. A depth vector is generated for each of multiple clients based on a set of reads that is received and aligned to a reference data set. A transformation processing of the depth vectors is performed to produce multiple components. Each of the components is assigned an order based on the extent to which it accounts for cross-client differences in the depth vectors. Each of the components includes an intensity, multiple values, and multiple client weights. A subset of the components is identified based on the order. A sparse indicator and positional data for the sparse indicator can be determined from the components in the subset, and one or more clients can be identified as being associated with the components.
Information query
Patent Agency Ranking
0/0