- Patent Title: Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding
-
Application No.: US15134437Application Date: 2016-04-21
-
Publication No.: US09858502B2Publication Date: 2018-01-02
- Inventor: Daniela Moody , Brendt Wohlberg
- Applicant: Los Alamos National Security, LLC
- Applicant Address: US NM Los Alamos
- Assignee: Los Alamos National Security, LLC
- Current Assignee: Los Alamos National Security, LLC
- Current Assignee Address: US NM Los Alamos
- Agency: LeonardPatel PC
- Main IPC: G06K9/62
- IPC: G06K9/62 ; G06K9/00

Abstract:
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
Public/Granted literature
Information query