Neural network processing of multiple feature streams using max pooling and restricted connectivity
Abstract:
Features are disclosed for improving the robustness of a neural network by using multiple (e.g., two or more) feature streams, combing data from the feature streams, and comparing the combined data to data from a subset of the feature streams (e.g., comparing values from the combined feature stream to values from one of the component feature streams of the combined feature stream). The neural network can include a component or layer that selects the data with the highest value, which can suppress or exclude some or all corrupted data from the combined feature stream. Subsequent layers of the neural network can restrict connections from the combined feature stream to a component feature stream to reduce the possibility that a corrupted combined feature stream will corrupt the component feature stream.
Information query
Patent Agency Ranking
0/0