Sublinear time classification via feature padding and hashing
Abstract:
A linear function describing a framework for identifying an object of class k in an image sample x may be described by: wk*x+bk, where bk is the bias term. The higher the value obtained for a particular classifier, the better the match or strength of identity. A method is disclosed for classifier and/or content padding to convert dot-products to distances, applying a hashing and/or nearest neighbor technique on the resulting padded vectors, and preprocessing that may improve the hash entropy. A vector for an image, an audio, and/or a video may be received. One or more classifier vectors may be obtained. A padded image, video, and/or audio vector and classifier vector may be generated. A dot product may be approximated and a hashing and/or nearest neighbor technique may be performed on the approximated dot product to identify at least one class (or object) present in the image, video, and/or audio.
Information query
Patent Agency Ranking
0/0