Abstract:
A computer-implemented system, method and program product generates answers to questions in an input query text string. The method includes determining, by a programmed processor unit, a lexical answer type (LAT) string associated with an input query; automatically obtaining a candidate answer string to the input query from a data corpus; mapping the query LAT string to a first type string in a structured resource; mapping the candidate answer string to a second type string in the structured resource; and determining if the first type string and the second type string are disjointed; and scoring the candidate answer string based on the determination of the types being disjointed wherein the structured resource includes a semantic database providing ontological content.
Abstract:
Diffusing evidence among candidate answers during question answering may identify a relationship between a first candidate answer and a second candidate answer, wherein the candidate answers are generated by a question-answering computer process, the candidate answers have associated supporting evidence, and the candidate answers have associated confidence scores. All or some of the evidence may be transferred from the first candidate answer to the second candidate answer based on the identified relationship. A new confidence score may be computed for the second candidate answer based on the transferred evidence.
Abstract:
Methods/systems receive a question and automatically search sources of data containing passages to produce candidate answers to the question. The searching identifies passages that support each of the candidate answers based on scoring features that indicate whether the candidate answers are correct answers to the question. These methods/systems automatically create a scoring feature- specific matrix for each scoring feature. Each scoring feature-specific matrix has a score field for each different combination of text passage and question term (vector), and each score field holds a score value (vector value) indicating how each different combination of text passage and question term supports the candidate answers as being a correct answer to the question. Next, such methods/systems automatically combine multiple such vectors to produce a combined vector score for each of the candidate answers, and then rank the candidate answers based on the combined scores.
Abstract:
Methods/systems receive a question and automatically search sources of data containing passages to produce candidate answers to the question. The searching identifies passages that support each of the candidate answers based on scoring features that indicate whether the candidate answers are correct answers to the question. These methods/systems automatically create a scoring feature- specific matrix for each scoring feature. Each scoring feature-specific matrix has a score field for each different combination of text passage and question term (vector), and each score field holds a score value (vector value) indicating how each different combination of text passage and question term supports the candidate answers as being a correct answer to the question. Next, such methods/systems automatically combine multiple such vectors to produce a combined vector score for each of the candidate answers, and then rank the candidate answers based on the combined scores.
Abstract:
A system, method and computer program product for automatically estimating the confidence of a detected LAT to provide a more accurate overall score for an obtained candidate answer. A confidence "score" or value of each detected LAT is obtained, and the system and method performs combining the confidence score with a degree of match between a LAT and an AnswerType of the candidate answer to provide improved overall score for the candidate answer.