Abstract:
An electrical device is provided with a p-type semiconductor device (105) having a first gate structure (60) that includes a gate dielectric (10) on top of a semiconductor substrate (5), a p-type work function metal layer (25), a metal layer (28) composed of titanium and aluminum, and a metal fill (29) composed of aluminum. An n-type semiconductor device (100) is also present, on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric (30) is present over the semiconductor substrate. The interlevel dielectric includes interconnects (80) to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminium, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.
Abstract:
An electrical device is provided with a p-type semiconductor device (105) having a first gate structure (60) that includes a gate dielectric (10) on top of a semiconductor substrate (5), a p-type work function metal layer (25), a metal layer (28) composed of titanium and aluminum, and a metal fill (29 ) composed of aluminum. An n-type semiconductor device (100) is also present, on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric (30) is present over the semiconductor substrate. The interlevel dielectric includes interconnects (80) to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminium, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.