Abstract:
An intermittent flushing plunger packing assembly is described herein. The packing assembly includes a plurality of annular seals disposed about the plunger configured to reciprocate along a linear axis within the fluid bore of the pump, and an annular packing nut disposed circumferentially about the plunger and configured to retain the plurality of annular seals and adjust a combined height of the plurality of annular seals. A selected one of the plurality of annular seals proximate to the fluid cylinder of the pump has a flushing fluid chamber in fluid communication with a flushing fluid port coupled to a first one-way check valve allowing a pressurized flushing fluid to be introduced and retained within the flushing fluid chamber and creating a fluid barrier to prevent frac fluid in the fluid cylinder from bypassing the annular seals.
Abstract:
A linear pump includes a centrally-disposed drive system and a plunger having a center portion coupled to the drive system, and first and second fluid ends disposed at the first and second ends of the plunger. The pump further includes first and second packing seals each being disposed about the plunger to isolate fluids within the respective first and second fluid ends. First and second adapters are disposed at an interface between the drive system and respective first and second fluid ends, each adapter incorporating an angled deflector configured to deflect and redirect high-pressure fluids escaping past the respective packing seal toward the drive system.
Abstract:
An electrically-actuated linear pump includes a linear actuator housing coupled to a screw housing. A rod is configured to linearly translate within screw housing and the linear actuator housing, the rod includes a threaded portion disposed axially between a first plunger portion and a second plunger portion. A linear actuator is disposed within the linear actuator housing and includes a drive mechanism in meshed engagement with the threaded portion of the rod, the meshed engagement operable to linearly translate the rod, the linear actuator being electrically-actuated. The pump includes a first fluid end and a second fluid end disposed opposite the first fluid end, each fluid end configured to receive and discharge a fluid. Translation of the rod toward the first fluid end discharges the fluid from the first fluid end and simultaneously draws the fluid into the second fluid end.
Abstract:
A cable-tie carrier is disclosed herein that includes a chip holder with a recess cavity for holding an electronic chip and a cable that is removably attached to the chip holder. The electronic chip stores identification information or testing data that may be used to identify and track the part. External computing devices (e.g., smart phone, tablet, scanner) may access the stored identification information or testing data for a user. The electronic chip is fastened, magnetically attached, or stuck with adhesive to the chip holder to position a transmitter (or antenna) to face out of the recess cavity.
Abstract:
The oil quality in an oil reservoir of a pump is monitored using the disclosed oil-monitoring sensor. The oil-monitoring sensor includes a first capacitive portion for measuring oil level and a second capacitive portion for measuring dielectric constant of the oil. Changes in dielectric constant of the oil are indicative of degradation of the quality of the oil (e.g., due to contaminants, oxidation, etc.) So oil-monitoring sensor is used to indicate various parameters about the oil quality to an operator. Using the disclosed sensors, the quality of the lubricant and/or cooling oil used by the pump may be monitored without needing to be present at the pump, or without needing to access the interior of the pump (or oil reservoir).
Abstract:
A valve assembly for a hydraulic frac pump includes a valve body having a spherical sealing surface, a valve seat having a circular concave sealing surface that receives and accommodates the spherical sealing surface of the valve body. The valve seat forms a fluid passageway, where the fluid passageway is completely closed when the valve body is received and accommodated in the valve seat in a closed position. The valve assembly further includes a stopper disposed above the valve body to restrict movement of the valve body when it is lifted off of the valve seat in an open position.
Abstract:
A valve assembly for a high-pressure fluid pump is described herein. The valve assembly includes a valve seat disposed in a cylindrical bore in a fluid end of the pump, and a valve body that includes: a top plate defining at least one pressure window, a lower sealing surface disposed below the top plate, and a dampener disk disposed between the top plate and the lower sealing surface, the dampener disk configured to expand in response to pressure exerted thereon via the top plate and through the at least one pressure window.
Abstract:
A flow restrictor is provided for a plug valve. The flow restrictor includes a restrictor body configured to be at least one of held within an internal bore of a valve body of the plug valve or mounted to the valve body in fluid communication with the internal bore. The restrictor body includes a plurality of fluid passages extending through a length of the restrictor body. The fluid passages include turns such that the fluid passages define tortuous fluid paths through the restrictor body.
Abstract:
According to one aspect, an apparatus adapted to be connected to a component that is part of a pump system or a manifold trailer includes a block defining opposing first and second exterior surfaces. In one aspect, the block includes a recess formed in the first exterior surface and extending towards the second exterior surface, and an opening formed in the second exterior surface. In another aspect, the apparatus also includes an electronic identifying device at least partially accommodated within the recess, the device including a first portion having data stored thereon that provides identification of the component. In one aspect, the electronic identifying device further includes a second portion having data stored thereon that provides one of: information associated with certification of the component; and identification of the pump system or the manifold trailer of which the component is a part.
Abstract:
A ball dropper assembly includes a main body and a ball injector assembly. The main body includes a fluid bore defining a fluid passage and radial bore intersecting the fluid bore. The ball injector assembly includes an inner ball deployment housing and an outer ball deployment housing disposed within the radial bore. The outer ball deployment housing has a plurality of gate members operable between a closed position, to retain the ball within the inner housing, and an open position, to allow deployment of the ball from the inner housing and into the fluid bore. The ball injector assembly is operable to rotate the inner housing with respect to the outer housing to move the plurality of gate members from the closed position to the open position and to deploy the ball into the fluid passage.