Abstract:
PROBLEM TO BE SOLVED: To provide a rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. SOLUTION: In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2-5% and the second yarns have a breaking elongation of approximately 2-12%. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
An RFID rope structure comprises an RFID thread and a plurality of rope elements. The RFID thread comprises a carrying structure and a plurality of RFID systems supported by the carrying structure. The plurality of rope elements are combined to define a reference axis. The RFID thread is supported by the rope elements such that each of the RFID systems is arranged at a predetermined location along the rope reference axis.
Abstract:
A rope structure comprises a plurality of link structures each defining first and second ends. Each link structure is formed of synthetic fibers. Each first end comprises at least first and second bend portions. Each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures engages the second end of a second one of the plurality of link structures such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A method of fabricating a composite rope structure comprising the following steps. Impregnated yarns comprising fibers within a resin matrix are fabricated at a first location. The impregnated yarns are transported from the first location to a second location. The impregnated yarns are dispensed at the second location. The resin matrix of the dispensed impregnated yarns is cured at the second location to obtain the composite rope structure.
Abstract:
A termination assembly for a composite rope structure comprising an end comprises a distal connection member and a proximal connection member. The distal connection member defines a first threaded surface and a working portion, where the working portion is adapted to be connected to a structure. The proximal connection member defines a second threaded surface, an internal surface, and a proximal opening. The first and second threaded surfaces are configured to engage each other to detachably attach the distal connection member and the proximal connection member. The internal surface of the proximal connection member is configured to engage the end of the composite rope structure to secure the composite rope structure relative to the proximal connection member.
Abstract:
A rope structure defining first and second ends and comprising first and second directional strands defining a first and second characteristics, respectively, and at least one additional strand. The second directional strand is distinguishable from the first directional strand and the at least one additional strand is distinguishable from the first and second directional strands based on the first and second characteristics. A first adjacent portion defined by the first directional strand and a second adjacent portion defined by the second directional strand are arranged within intermediate sections of the rope structure such that the first adjacent portion(s) of the first directional strand is(are) closer to the first end of the rope than the second adjacent portion(s) of the second directional strand and the second adjacent portion is(are) closer to the second end of the rope than the first adjacent portion.
Abstract:
A hook assembly comprises a hook member and a pin assembly. The hook member defines a base portion, a hook, and first and second pin arms. The hook extends from the base portion and defines a first, second, third, and fourth hook portions and a hook opening. First and second lock projections extend from the second hook portion and fourth hook portions to define a lock gap. The hook opening has a first hook opening dimension extending between the second hook portion and the fourth hook portion and a second opening dimension extending between the third hook portion and the lock gap. The first and second pin arms extend from the base portion. The pin assembly engages the first and second pin arms. The first rope segment engages the pin assembly and the second rope segment engages the third hook portion to place the hook assembly under tension.
Abstract:
A tapered rope structure (20) comprises a first rope region (24), a second rope region (26), and a splice region (22). The splice region (22) is between the first and the second rope regions (24, 26) and comprises a taper portion (32), a finish portion (34), and an overlap portion (30). The finish portion (34) is arranged between the taper portion (32) and the first rope region (24). The overlap portion (30) is arranged between the taper portion (32) and the second rope region (26). A diameter of the first rope region is smaller than a diameter of the second rope region (26). A diameter of the overlap portion (30) is greater than the diameter of the second rope region (26). A diameter of the splice region (22) generally decreases from the overlap portion (30) to the first rope region (24).
Abstract:
A chafe jacket is used with a line extending around a structure comprising a tube structure defining an inner surface and a jacket axis. The tube structure comprises fibers each defining a fiber axis. The fiber axes defined by portions of the fibers defining the interior surface of the tube structure extend at an interior fiber angle of less than approximately 50 degrees relative to the jacket axis. The chafe jacket extends around at least a portion of the line adjacent to the structure to reduce wear on the line.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.