脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法

    公开(公告)号:CN109034263B

    公开(公告)日:2021-08-10

    申请号:CN201810930199.6

    申请日:2018-08-15

    Applicant: 东北大学

    Abstract: 本发明提供一种脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法,涉及计算机辅助诊断技术领域。该装置包括图像预处理模块、图像分频模块、图核生成模块、图核融合模块和辅助诊断模块;图像分频模块将功能核磁共振图像与AAL模板进行匹配,并进行分频处理;图核生成模块对分频后的图像构建多频脑网络,并形成一个矩阵;图核融合模块将所有图核融合成为一个图核;辅助诊断模块将融合的图核与核极限学习机结合,实现对阿尔茨海默病的诊断。本发明还提供了采用该装置进行诊断的方法。本发明提供的脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法,能够充分表示多频段下大脑活动信息差异,令功能核磁共振图像的信号信息得到充分发挥。

    基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法

    公开(公告)号:CN110718301A

    公开(公告)日:2020-01-21

    申请号:CN201910916563.8

    申请日:2019-09-26

    Applicant: 东北大学

    Abstract: 本发明公布了一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法。诊断装置包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,该诊断装置的使用方法为:首先进行图像预处理,然后构建动态脑网络,其次计算分割后的脑网络的节点度量,并通过时间序列生成器将每个节点度量构成一个时间序列,随后通过特征提取器为构成的时间序列提取特征,再通过特征过滤器将过滤后的特征拼接成一个矩阵并通过特征筛选器筛选,最后通过数据训练器进行数据的分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断。该方法克服了静态脑功能网络无法表示动态信息的缺陷,起到了更好的为医疗辅助诊断服务的效果。

    基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法

    公开(公告)号:CN110718301B

    公开(公告)日:2024-04-19

    申请号:CN201910916563.8

    申请日:2019-09-26

    Applicant: 东北大学

    Abstract: 本发明公布了一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法。诊断装置包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,该诊断装置的使用方法为:首先进行图像预处理,然后构建动态脑网络,其次计算分割后的脑网络的节点度量,并通过时间序列生成器将每个节点度量构成一个时间序列,随后通过特征提取器为构成的时间序列提取特征,再通过特征过滤器将过滤后的特征拼接成一个矩阵并通过特征筛选器筛选,最后通过数据训练器进行数据的分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断。该方法克服了静态脑功能网络无法表示动态信息的缺陷,起到了更好的为医疗辅助诊断服务的效果。

    脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法

    公开(公告)号:CN109034263A

    公开(公告)日:2018-12-18

    申请号:CN201810930199.6

    申请日:2018-08-15

    Applicant: 东北大学

    CPC classification number: G06K9/6289 G06T11/008 G16H50/20

    Abstract: 本发明提供一种脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法,涉及计算机辅助诊断技术领域。该装置包括图像预处理模块、图像分频模块、图核生成模块、图核融合模块和辅助诊断模块;图像分频模块将功能核磁共振图像与AAL模板进行匹配,并进行分频处理;图核生成模块对分频后的图像构建多频脑网络,并形成一个矩阵;图核融合模块将所有图核融合成为一个图核;辅助诊断模块将融合的图核与核极限学习机结合,实现对阿尔茨海默病的诊断。本发明还提供了采用该装置进行诊断的方法。本发明提供的脑网络多频融合图核的阿尔茨海默病辅助诊断装置及方法,能够充分表示多频段下大脑活动信息差异,令功能核磁共振图像的信号信息得到充分发挥。

Patent Agency Ranking