Abstract:
본 발명은 높은 기공도, 전기 전도도, 강도 및 가스 투과도를 나타낼 수 있는 원통형 고체산화물 연료전지용 연료극 지지체의 제조방법, 이를 사용하여 제조된 고체산화물 연료전지용 연료극 지지체 및 이를 포함하는 원통형 고체산화물 연료전지에 관한 것이다. 본 발명에 따라 제조된 고체산화물 연료전지용 연료극 지지체를 포함하여 구성된 원통형 고체산화물 연료전지는 고출력화가 가능하고 기동속도 및 열사이클 저항성이 증가될 수 있다.
Abstract:
본 발명은 공기극의 재료로써 LSCF를 적용하고 LSCF 공기극과 YSZ 전해질 사이에 CGO코팅층이 형성된 고체산화물 연료전지에 관한 것으로, 더 자세하게는 상기 YSZ층 및 CGO층은 진공슬러리 코팅법을 이용하여 형성되고, 1350℃에서 공소결 됨으로써 더욱 치밀한 코팅막을 형성하는데 그 기술적 특징이 있다. 본 발명의 CGO코팅층을 갖는 고체산화물 연료전지는 YSZ층과 반응하지 않고 LSCF 전극과 YSZ 전해질의 반응을 효과적으로 억제하여 고체산화물 연료전지의 작동온도 800℃에서 단위 전지의 최대전력은 공소결 온도 1350℃일때 1040mW/cm 2 이고 0.7V에서의 전력은 960mW/cm 2 으로 고체산화물 연료전지의 우수한 성능을 얻을 수 있는 장점이 있다. 고체산화물 연료전지, CGO코팅, 진공슬러리 코팅, 공소결
Abstract:
PURPOSE: A manufacturing method of a fuel electrode support is provided to obtain a fuel electrode support with excellent porosity, electric conductivity, mechanical strength, and gas permeability. CONSTITUTION: A manufacturing method of a fuel electrode support comprises: a step of mixing an activated carbon or carbon black to a Ni/8YSZ cement and adding a solvent to the same to prepare a slurry and uniformizing the slurry by a ball-milling; a step of drying and powderizing the mixture; a step of adding a binder, plasticizer, lubricant, and distilled water, and milling the mixture to manufacture a paste; a step of extruding the paste to manufacture a fuel electrode support; and a step of heat-treating and pre-sintering the fuel electrode support.
Abstract:
PURPOSE: A manufacturing method of a fuel electrode support is provided to prevent the fracture of a fuel electrode support by decomposing components by a pre-sintering process. CONSTITUTION: A manufacturing method of a fuel electrode support comprises: a step of ball milling a zirconia-based ceramic, activated charcoal, binder, plasticizer, lubricant, and distilled water and mixing and pulverizing the materials; a step of adding a binder and solvent to the pulverized mixture, milling the added mixture, and preparing a paste for manufacturing a fuel electrode support; a step of extruding the paste and manufacturing a fuel electrode support for a solid oxide fuel cell; and a step of heat-treating the fuel electrode support and pre-sintering the fuel electrode.
Abstract:
PURPOSE: A method for manufacturing an LSCF/CGO air electrode is provided to improve sinterability by preventing grain growth of LSCF and to prepare air electrode with excellent electrode characteristics. CONSTITUTION: A method for manufacturing an LSCF/CGO air electrode comprises the steps of: mixing La2O3, SrCO3, Co(No3)2·6H2O, and Fe2O3 in a weight mixing ratio of 97.84 : 62.16 : 59.39 : 67.24, pulverizing the mixture, and sintering the mixture at 1050~1200°C for 9~11 hours to synthesize La_0.6Sr_0.4Co_0.2Fe_0.8O_(3-δ)(LSCF) powder of a rhombohedral perovskite; mixing gadolinium-doped ceria(CGO) powder with the LSCF powder in a ratio of 45~55 weight%; and sintering the mixed powder at 1100~1200°C for 4~6 hours to form the air electrode.
Abstract:
A solid oxide fuel cell with a germanium/gadolinium oxide coating layer is provided to suppress the reaction of a lanthanium/strontium/cobalt/iron oxide electrode and yttria-stabilized zirconia electrolyte without reaction with a yttria-stabilized zirconia layer. A method for manufacturing a solid oxide fuel cell with a germanium/gadolinium oxide coating layer comprises the steps of: forming a fuel electrode supporter made of NiO, yttria-stabilized zirconia and activated carbon; dipping coating a fuel electrode functional layer on the surface of the fuel electrode supporter and then calcining it at 1000 °C for 3 hours; forming a yttria-stabilized zirconia coating layer on the surface of the fuel electrode supporter by using a vacuum slurry coating method and calcining it at 1080 °C for 3 hours; forming a germanium/gadolinium oxide coating layer on the supporter coated with yttria-stabilized zirconia by using the vacuum slurry coating method; co-sintering the yttria-stabilized zirconia and germanium/gadolinium oxide coating layer at 1350 °C for 5 hours; and coating a lanthanium/strontium/cobalt/iron oxide air electrode on the surface of the yttria-stabilized zirconia and germanium/gadolinium oxide coating layer, and calcining the coated air electrode at 1200 °C.