Abstract:
A system provides light of selectable spectral characteristic (e.g. a selectable color combination of light), for luminous applications such a signage and indicator lights (10). An optical integrating cavity (11) combines energy of different wavelengths from different sources, typically different colored LEDs. The cavity has a diffusively reflective interior surface (29) and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of each wavelength of light in the combined output and thus determines a spectral characteristic of the light output through the aperture. A deflector (25) shaped like a number, character, letter, or other symbol, may be coupled to a similarly shaped aperture. By combining several such fixtures, it is possible to spell out words and phrases, with selectable color lighting. Disclosed fixture examples use an extruded body member with appropriately located reflective surfaces to form both the cavity and deflector.
Abstract:
A system (10) provides white light having a selectable spectral characteristic (e.g. a selectable color temperature) using an optical integrating cavity (11) to combine energy of different wavelengths from different sources with white light. The cavity has a diffusively reflective interior surface and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of primary color light of each wavelength added to the substantially white input light output and thus determines a spectral characteristic of the white light output through the aperture. A variety of different elements may optically process the combined light output, such a deflector, a variable iris, and a lens a variable focusing lenses system, a collimator, a holographic diffuser and combinations thereof.
Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of the desired character. In the examples of appropriate systems, an optical integrating cavity diffusely reflects light of three or more colors, and combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights are easily recorded for reuse or for transfer and use in other systems.
Abstract:
A system (10) provides white light having a selectable spectral characteristic (e.g. a selectable color temperature) using an optical integrating cavity (11) to combine energy of different wavelengths from different sources with white light. The cavity has a diffusively reflective interior surface and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of primary color light of each wavelength added to the substantially white input light output and thus determines a spectral characteristic of the white light output through the aperture. A variety of different elements may optically process the combined light output, such a deflector, a variable iris, and a lens a variable focusing lenses system, a collimator, a holographic diffuser and combinations thereof.
Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of the desired character. In the examples of appropriate systems (10), an optical integrating cavity (11) diffusely reflects light of three or more colors, and combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights (19) are easily recorded for reuse or for transfer and use in other systems.
Abstract:
A system provides light of selectable spectral characteristic (e.g. a selectable color combination of light), for luminous applications such a signage and indicator lights (10). An optical integrating cavity (11) combines energy of different wavelengths from different sources, typically different colored LEDs. The cavity has a diffusively reflective interior surface (29) and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of each wavelength of light in the combined output and thus determines a spectral characteristic of the light output through the aperture. A deflector (25) shaped like a number, character, letter, or other symbol, may be coupled to a similarly shaped aperture. By combining several such fixtures, it is possible to spell out words and phrases, with selectable color lighting. Disclosed fixture examples use an extruded body member with appropriately located reflective surfaces to form both the cavity and deflector.
Abstract:
A system (10) provides white light having a selectable spectral characteristic (e.g. a selectable color temperature) using an optical integrating cavity (11) to combine energy of different wavelengths from different sources with white light. The cavity has a diffusively reflective interior surface and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of primary color light of each wavelength added to the substantially white input light output and thus determines a spectral characteristic of the white light output through the aperture. A variety of different elements may optically process the combined light output, such a deflector, a variable iris, and a lens a variable focusing lenses system, a collimator, a holographic diffuser and combinations thereof.
Abstract:
A system provides light of selectable spectral characteristic (e.g. a selectable color combination of light), for luminous applications such a signage and indicator lights (10). An optical integrating cavity (11) combin es energy of different wavelengths from different sources, typically different colored LEDs. The cavity has a diffusively reflective interior surface (29) and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of each wavelength of light in the combined output and thus determines a spectral characteristic o f the light output through the aperture. A deflector (25) shaped like a number , character, letter, or other symbol, may be coupled to a similarly shaped aperture. By combining several such fixtures, it is possible to spell out words and phrases, with selectable color lighting. Disclosed fixture example s use an extruded body member with appropriately located reflective surfaces t o form both the cavity and deflector.
Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of th e desired character. In the examples of appropriate systems (10), an optical integrating cavity (11) diffusely reflects light of three or more colors, an d combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights (19) are easily recorded for reuse or for transfer and use in other systems.
Abstract:
A desired color of illumination of a subject is achieved by determining settings for color inputs and applying those setting to one or more systems that generate and mix colors of light, so as to provide combined light of the desired character. In the examples of appropriate systems, an optical integrating cavity diffusely reflects light of three or more colors, and combined light emerging from an aperture of the cavity illuminates the subject. System settings for amounts of the different colors of the input lights are easily recorded for reuse or for transfer and use in other systems.