Abstract:
Common electrodes (Vcom) of integrated touch screens can be segmented into electrically isolated Vcom portions that can be operated as drive lines and/or sense lines of a touch sensing system. The touch screen can include high-resistivity connections between Vcom portions. The resistivity of the high-resistivity connections can be high enough so that touch sensing and image display can be performed by the touch screen, and the high-resistivity connections can provide an added functionality by allowing a charge build up on one of the Vcom portions to be spread to other Vcom portions and/or discharged from system by allowing charge to leak through the high-resistivity connections. In this way, for example, visual artifacts that result from charge build up on a Vcom portion can be reduced or eliminated.
Abstract:
Methods and devices for shielding displays (18) from electrostatic discharge (ESD) are provided. In one example, a display (18) of an electronic device (10) may include a high resistivity shielding layer (78) configured to protect electrical components from static charges. The display (18) may also include a conductive layer electrically coupled to the high resistivity shielding layer (78) and configured to decrease a discharge time of static charges from the high resistivity shielding layer (78). The display (18) may include a grounding layer (72) and a conductor electrically coupled between the conductive layer and the grounding layer (72) to direct static charges from the conductive layer to the grounding layer (72).
Abstract:
A self-capacitive touch sensor panel configured to have a portion of both the touch and display functionality integrated into a common layer is provided. The touch sensor panel includes a layer with circuit elements that can switchably operate as both touch circuitry and display circuitry such that during a touch mode of the device the circuit elements operate as touch circuitry and during a display mode of the device the circuit elements operate as display circuitry. The touch mode and display mode can be time multiplexed. By integrating the touch hardware and display hardware into common layers, savings in power, weight and thickness of the device can be realized.
Abstract:
A self-capacitive touch sensor panel configured to have a portion of both the touch and display functionality integrated into a common layer is provided. The touch sensor panel includes a layer with circuit elements that can switchably operate as both touch circuitry and display circuitry such that during a touch mode of the device the circuit elements operate as touch circuitry and during a display mode of the device the circuit elements operate as display circuitry. The touch mode and display mode can be time multiplexed. By integrating the touch hardware and display hardware into common layers, savings in power, weight and thickness of the device can be realized.
Abstract:
A self-capacitive touch sensor panel configured to have a portion of both the touch and display functionality integrated into a common layer is provided. The touch sensor panel includes a layer with circuit elements that can switchably operate as both touch circuitry and display circuitry such that during a touch mode of the device the circuit elements operate as touch circuitry and during a display mode of the device the circuit elements operate as display circuitry. The touch mode and display mode can be time multiplexed. By integrating the touch hardware and display hardware into common layers, savings in power, weight and thickness of the device can be realized.