Abstract:
A system may include finger devices. A touch sensor may be mounted in a finger device housing to gather input from an external object as the object moves along an exterior surface of the housing. The touch sensor may include capacitive sensor electrodes. Sensors such as force sensors, ultrasonic sensors, inertial measurement units, optical sensors, and other components may be used in gathering finger input from a user. Finger input from a user may be used to manipulate virtual objects in a mixed reality or virtual reality environment while a haptic output device in a finger device provides associated haptic output. A user may interact with real-world objects while computer-generated content is overlaid over some or all of the objects. Object rotations and other movements may be converted into input for a mixed reality or virtual reality system using force measurements or other sensors measurements made with the finger devices.
Abstract:
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.
Abstract:
A laptop computer includes a display portion comprising a primary display and a base portion coupled to the display portion. The base portion includes a keyboard and a light-transmissive cover defining a first touch-sensitive input region along a first side of the keyboard and a second touch-sensitive input region along a second side of the keyboard. The base portion also includes a first display under the first touch-sensitive input region and a second display under the second touch-sensitive input region.
Abstract:
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.
Abstract:
The present disclosure generally relates to engaging in cross device interactions. The method includes at a first device with a first display, while a second device having a second display is placed over a first region of the first display, detecting, via input devices of the first device, a first input. In response to detecting the first input and in accordance with a determination that the first input occurred while focus was directed to the second device, the method includes causing a response to the first input to be displayed on the second display. In response to detecting the first input and in accordance with a determination that the first input occurred while focus was directed to the first device, the method includes displaying, on the first display, a response to the first input without causing a response to the first input to be displayed on the second display.
Abstract:
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.
Abstract:
Systems and methods for decoupling the electrical and mechanical functionality of a depressible key are disclosed. The depressible key can include a non-contact proximity sensor, such as an optical sensor, to detect motion of the keycap. The output from the optical sensor is used to determine a distance, velocity, acceleration, and a force applied during a keypress.
Abstract:
In a first implementation, a host determines to pair with a device and transmits biometric data for a user to the device. The device receives the transmitted biometric data and compares such to device biometric data to determine whether or not to pair with the host and/or what data stored by the device to allow the host to access. The host then accesses data of the device to which the device has allowed access. In another implementation, a device determines to pair with a host and transmits biometric data for a user to the host. The host receives the transmitted biometric data and compares such to device biometric data to determine whether or not to pair with the device and/or what data stored by the host to allow the device to access. The device then accesses data of the host to which the host has allowed access.
Abstract:
A laptop computer includes a display portion comprising a primary display and a base portion coupled to the display portion. The base portion includes a keyboard and a light-transmissive cover defining a first touch-sensitive input region along a first side of the keyboard and a second touch-sensitive input region along a second side of the keyboard. The base portion also includes a first display under the first touch-sensitive input region and a second display under the second touch-sensitive input region.
Abstract:
The present disclosure generally relates to engaging in cross device interactions. The method includes at a first device with a first display, while a second device having a second display is placed over a first region of the first display, detecting, via input devices of the first device, a first input. In response to detecting the first input and in accordance with a determination that the first input occurred while focus was directed to the second device, the method includes causing a response to the first input to be displayed on the second display. In response to detecting the first input and in accordance with a determination that the first input occurred while focus was directed to the first device, the method includes displaying, on the first display, a response to the first input without causing a response to the first input to be displayed on the second display.