Abstract:
The present invention relates to a lubricant comprising a polyacrylate which contains a C13/15 acrylate in polymerized form, where the C13/15 acrylate comprises at least 70 wt % of linear and branched C13 and C15 alkyl (meth)acrylates. It further relates to the polyacrylate, to the C13/15 acrylate, to a method for preparing the polyacrylate by free-radical polymerization of the C13/15 acrylate, and to a method for preparing a lubricant by contacting the polyacrylate to a base oil.
Abstract:
The invention concerns a method for providing a high-purity n-butanol product stream from a crude n-butanol feed stream by fractional distillation in a dividing wall column (102) including an upper section (104), a middle section and a lower section (110), the middle section including an inflow section (106) and an offtake section (108) laterally separated from each other by a dividing wall (112) fixed in the column, the crude n-butanol feed stream being fed to the inflow section (106) and the high-purity n-butanol product stream being withdrawn from the offtake section (108), the liquid stream flowing out of the upper section (104) being collected and divided into a first liquid stream (114) and a second liquid stream (116), the first liquid stream (114) being fed to the upper region of the offtake section (108) and the second liquid stream (116) being fed to the upper region of the inflow section (106), wherein the split ratio between the mass flow rate of the first liquid stream (114) and the mass flow rate of the second liquid stream (116) is from 2:1 to 5:1.
Abstract:
Low-pressure hydroformylation of diisobutene A hydroformylation process for preparing 3,5,5-trimethylhexanal comprising reacting 2,4,4-tri-methylpent-2-ene with H2 and CO in a reaction zone in the presence of one or more free organ-ophosphite ligands of the general formula (1)
wherein
R1, R2, R3, R4 and R5 are each independently H, C1- to C9-alkyl or C1- to C9-alkoxy and R1, R2, R3, R4 and R5 are not H at the same time, and R6, R7, R8, R9 and R10 are each independently H, C1- to C9-alkyl or C1- to C9-alkoxy and R6, R7, R8, R9 and R10 are not H at the same time, and R11, R12, R13, R14 and R15 are each independently H, C1- to C9-alkyl or C1- to C9-alkoxy and R11, R12, R13, R14 and R15 are not H at the same time,
and a homogeneous rhodium catalyst complexed with one or more organophosphite ligands of the general formula (I) at a pressure of 1 to 100 bar abs and a temperature of from 50 to 200° C.
Abstract:
A process for preparing C4 to C10 monohydroxy compounds from a bottom fraction arising in the distillation of a crude mixture of C4 to C10 oxo-process aldehydes from cobalt-catalyzed or rhodium-catalyzed hydroformylation, or in the distillation of a crude mixture of C4 to C10 oxo-process alcohols, which comprises contacting the bottom fraction in the presence of hydrogen with a catalyst comprising copper oxide and aluminum oxide, at a temperature of 150° C. to 300° C. and a pressure of 20 bar to 300 bar and subjecting the resulting crude hydrogenation product to distillation, and the amount of C4 to C10 monohydroxy compounds present in the crude hydrogenation product after the hydrogenation being greater than the amount of C4 to C10 monohydroxy compounds given stoichiometrically from the hydrogenation of the ester and aldehyde compounds present in the bottom fraction, including the C4 to C10 monohydroxy compounds still present in the bottom fraction before the hydrogenation.
Abstract:
Method of removing cobalt deposits in a reactor for the cobalt-catalyzed high-pressure hydroformylation of olefins by treatment with aqueous nitric acid, wherein the reactor is at least partly filled with aqueous nitric acid and the temperature of the aqueous nitric acid is increased during the treatment.
Abstract:
Process for hydroformylation of olefins having 6 to 20 carbon atoms in the presence of a cobalt catalyst in the presence of an aqueous phase with thorough mixing in a reactor wherein a hydroformylation products-containing first stream is withdrawn at the top of the reactor and an aqueous phase-containing second stream is withdrawn from the bottom of the reactor via at least one line leading out of the bottom of the reactor, which process comprises controlling one or more mass flow parameters of the second stream in accordance with the density of the second stream.
Abstract:
Proposed is a cylindrical reactor (1) having a vertical longitudinal axis for continuous hydroformylation of a C6-C20-olefin or a mixture of C6-C20-olefins with synthesis gas in the presence of a homogeneously dissolved metal carbonyl complex catalyst, having a multiplicity of Field tubes (2) which are oriented parallel to the longitudinal axis of the reactor (1) and welded into a tube plate at the upper end of the reactor (1), having a circulation tube (3) open at both ends which envelops the Field tubes (2) and at its lower end projects beyond said tubes, having a jet nozzle (4) at the bottom of the reactor (1) for injecting the reactant mixture comprising the C6-C20-olefin, the synthesis gas and the metal carbonyl complex catalyst, wherein the Field tubes (2) are configured in terms of their number and their dimensions such that the total heat exchanger area of said tubes per unit internal volume of the reactor is in the range from 1 m2/m3 to 11 m2/m3 and the cross sectional area occupied by the Field tubes (2) per unit cross sectional area of the circulation tube (3) is in the range from 0.03 m2/m2 to 0.30 m2/m2, a gas distributor ring (5) is provided at the lower end of the circulation tube (3), at the inner wall thereof, via which a substream of the synthesis gas is feedable, and wherein one or more distributor trays (6) are provided in the circulation tube (3).