Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EPDM rubber, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 2 to 15 parts by weight of a vulcanized agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 0.2 to 3 parts by weight of a cross-linking agent, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A light emitting panel (1) is provided. The light emitting panel (1) includes a framework (10); an installing slot (1011) disposed on the internal surface of the framework (10); a light guide module (30) having an edge disposed in the installing slot (1011); and a light illuminating element (20) disposed in the installing slot (1011) and between the light guide module (30) and the bottom wall of the installing slot (1011).
Abstract:
An LED module includes a lamp frame (2) defining a first cavity therein, an LED light source (1) disposed in the lamp frame (2), a prism (3), a reflecting plate (4), a brightness enhancement plate (5) disposed above the reflecting plate (4), and a diffusing plate (6) disposed above the brightness enhancement plate (5). The LED light source (1) includes at least a white light LED and a red light LED. The prism (3) is disposed to seal the opening (21) of the first cavity and includes a light exiting surface (32) and a light incident surface (31) facing the LED light source (1). The reflecting plate (4) is disposed at a side of the prism (3) adjacent to the light exiting surface (32). The brightness enhancement plate (5) defines a sealed second cavity together with the prism (3) and the reflecting plate (4).
Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EVA, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 10 to 50 parts by weight of thermoplastic resin, 10 to 100 parts by weight of a toughening agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A base plate for a heat sink as well as a heat sink and an IGBT module having the same are provided. The base plate includes: a base plate body, including a body part; and a first surface layer and a second surface layer disposed respectively on two opposing surfaces of the body part; and N pins disposed on the first surface layer and spaced apart from one another, each pin having a first end fixed on the first surface layer and a second end configured as a free end, in which the first surface layer and the N pins are configured to contact a coolant, an area of a first portion of the first surface layer contacting the coolant is denoted as S1, and an area of a second portion of the first surface layer contacting each pin is denoted as S2, in which 180≤S1/S2≤800, and 300≤N
Abstract:
To resolve problems that a manner of performing high-frequency noise reduction by constructing a harmonic signal is relatively monotonous, and that there is still space for further improvement of sound quality of an acoustic environment thereof, the present invention provides an active noise reduction method, a system, and a new energy vehicle. According to an aspect of the present invention, an active noise reduction method is provided, including the following steps: obtaining a frequency of a high-frequency noise signal in an acoustic environment, constructing and generating a harmonic masking signal according to the frequency of the high-frequency noise signal, where the harmonic masking signal includes a harmonic signal and a masking signal, and the harmonic signal is a subharmonic wave of the high-frequency noise signal, and inputting the harmonic masking signal into a sound playback apparatus for playback to output a noise reduction construction sound, and performing noise reduction on the acoustic environment. According to the active noise reduction method disclosed by the present invention, the sound quality of the acoustic environment may be further improved. In addition, the method is simple and easy to operate and has low costs.
Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EPDM rubber, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 2 to 15 parts by weight of a vulcanized agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 0.2 to 3 parts by weight of a cross-linking agent, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EVA, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 10 to 50 parts by weight of thermoplastic resin, 10 to 100 parts by weight of a toughening agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A base plate for a heat sink as well as a heat sink and an IGBT module having the same are provided. The base plate includes: a base plate body, including a body part; and a first surface layer and a second surface layer disposed respectively on two opposing surfaces of the body part; and N pins disposed on the first surface layer and spaced apart from one another, each pin having a first end fixed on the first surface layer and a second end configured as a free end, in which the first surface layer and the N pins are configured to contact a coolant, an area of a first portion of the first surface layer contacting the coolant is denoted as S1, and an area of a second portion of the first surface layer contacting each pin is denoted as S2, in which 180≤S1/S2≤800, and 300≤N