Abstract:
The present disclosure relates to use of polydopamine (PD) coated cellulose nanocrystals (CNCs) as template for further conjugation of functional oligomers (amines, carboxylic acids etc.) and the immobilization of various types of CNC hybrid nanomaterial nanoparticles to improve their stability in aqueous solution, e.g. the preparation of silver nanoparticle on CNC. Surface functionalization of CNC with polydopamine can be performed by mixing dopamine and CNCs for certain time at designed temperature. The resultant PD-CNCs can be used to stabilize metallic and inorganic nanoparticles, which could be generated in-situ, and further immobilized on the surface of PD coated CNCs. Benefiting from the improved stability, the resultant nanoparticles immobilized PD-CNC system also generally possess higher catalytic activity than the nanoparticles alone.
Abstract:
The present disclosure provides a core-shell nanocomposite material comprising an intrinsically conductive polymer (ICP) polymerized on the surface of oxidized cellulose nanocrystals (CNCs) as well as synthesis for preparing same and its use thereof in various applications.
Abstract:
The present disclosure relates to a process for preparing coated cellulose nanocrystals (CNCs) and relates as well to coated cellulose nanocrystals (CNCs) obtainable by the process described herein. These new CNC hybrid nanomaterials are expected to be useful, for example, for the conjugation and electrostatic complexation with various functional moieties such as free metal ions, carboxylic acids, and epoxy and aldehyde derivatives. The disclosure further relates to a method to fabricate N-doped carbon nanomaterial from the coated CNCs.
Abstract:
The present disclosure provides a core-shell nanocomposite material comprising an intrinsically conductive polymer (ICP) and surface-modified cellulose nanocrystals (CNCs) as well as synthesis for preparing same and its use thereof in various applications.