Abstract:
The refrigeration compressor according to the invention comprises a sealed enclosure containing a compression stage (7) and provide with a refrigerant inlet and outlet (6, 18), the compressor being configured such that under usage conditions, a flow of refrigerant circulates through the refrigerant inlet, the compression stage, and the refrigerant outlet. The compressor has an oil pan (24) and oil recirculation means arranged to orient the oil contained in the oil pan into the flow of refrigerant when the oil in the oil pan exceeds a predetermined oil level (34). The recirculation means include a recirculation line (35) housed in the sealed enclosure and comprising an inlet port (36) situated at a height substantially corresponding to the predetermined oil level, an outlet port (37) emerging in the refrigerant flow, and an intermediate part (38) connecting the inlet and outlet ports. The intermediate part (38) includes a first portion (38a) extending below the predetermined oil level (34).
Abstract:
The compressor includes a sealed enclosure containing a compression stage, an electric motor having a stator provided with a first and second end windings, an intermediate casing surrounding the stator so as to define an annular outer volume with the sealed enclosure, connecting means arranged to fluidly connect the compression stage and a distal chamber defined by the intermediate casing and the electric motor and comprising the second end winding, and a refrigerant suction inlet emerging in the annular outer volume. The connecting means include at least one refrigerant circulation duct situated outside the intermediate casing, and at least one distal window formed on the intermediate casing and emerging on the one hand in the at least one refrigerant circulation duct and on the other hand in the distal chamber near the second end winding of the stator.
Abstract:
An Oldham coupling includes an annular ring having a first side and a second side opposite to the first side, a first and a second engaging groove that are diametrically opposed and located on the first side, and a third and a fourth engaging groove that are diametrically opposed and located on the second side. The first and second engaging grooves are configured to be engaged with a first and a second engaging projection provided on a fixed element. The third and fourth engaging grooves are configured to be engaged with a third and a fourth engaging projection provided on an orbiting scroll. The first and third engaging grooves are located in a first angular sector, and the second and fourth engaging grooves are located in a second diametrically opposed angular sector of the annular ring, the first and second angular sectors have an opening angle less than 40°.
Abstract:
The scroll refrigeration compressor according to the invention includes a sealed enclosure at least partially defining a discharge chamber designed to be connected to a discharge line, and a discharge valve attached on the sealed enclosure and fluidly connected to the discharge chamber. The discharge valve includes a valve body, a valve seat, and a discharge check valve movable between a covering position and a released position. The discharge valve includes deflection means positioned in the valve body and arranged to orient the flow of refrigerant coming from the discharge line at least partially toward the periphery of the discharge check valve.
Abstract:
An Oldham coupling includes an annular ring having a first side and a second side opposite to the first side, a first and a second engaging groove that are diametrically opposed and located on the first side, and a third and a fourth engaging groove that are diametrically opposed and located on the second side. The first and second engaging grooves are configured to be engaged with a first and a second engaging projection provided on a fixed element. The third and fourth engaging grooves are configured to be engaged with a third and a fourth engaging projection provided on an orbiting scroll. The first and third engaging grooves are located in a first angular sector, and the second and fourth engaging grooves are located in a second diametrically opposed angular sector of the annular ring, the first and second angular sectors have an opening angle less than 40°.