Abstract:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a compressor motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the compressor motor, speed of the compressor motor, output power of the inverter power module, and drive input power. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
Abstract:
A power factor correction (PFC) system includes a direct current (DC) module, an error control module, an offset module, and a duty cycle control module. The DC module determines an average current value based on a plurality of current values over at least one cycle of an input alternating current (AC) line signal of the PFC system. The error control module generates an error signal based on the average current value. The offset module offsets a desired instantaneous current based on the error signal. The duty cycle control module controls at least one duty cycle of switches of the PFC system based on the offset desired instantaneous current.
Abstract:
Un sistema incluye un módulo de modulación de ancho de pulso (PWM), un módulo de substracción, un módulo de reducción de error, y un módulo de suma. El módulo PWM controla la conmutación de un inversor que energiza un motor. El módulo PWM controla la conmutación con base en un primer ángulo en un primer modo y un segundo ángulo en un segundo modo. El módulo de substracción determina una diferencia entre los primero y segundo ángulos. El módulo de reducción de error (i) almacena la diferencia cuando es ordenada con un comando una transición desde el primer modo hacia el segundo modo y (ji) disminuye una magnitud de la diferencia almacenada a cero. El módulo de suma calcula una suma de la diferencia almacenada y el segundo ángulo. El módulo PWM controla la conmutación con base en la suma en el segundo modo.
Abstract:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a compressor motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the compressor motor, speed of the compressor motor, output power of the inverter power module, and drive input power. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
Abstract:
Un sistema de control de motor incluye un módulo de control, un módulo de conmutación, y un módulo de filtración. El módulo de control determina los voltajes de salida para operar un motor con base en una demanda de torque. El módulo de conmutación genera las señales de conmutación para un inversor que acciona el motor. El módulo de conmutación genera las señales de conmutación con base en los voltajes de salida. El módulo de conmutación genera una señal fuera-de- volts (OOV) de acuerdo con una comparación basada en los voltajes de salida, un ciclo de máximo servicio, y un voltaje de un bus de corriente directa (DC) que proporciona energía al inversor. El módulo de filtración genera una cantidad de OOV al filtrar la señal OOV. El módulo de control limita selectivamente la demanda de torque con base en la cantidad de OOV.
Abstract:
A current control module generates a voltage request based on a d-axis current (Idr) demand. A switching control module controls a motor based on the voltage request and generates an out-of-volts (OOV) signal based on a comparison of the voltage request and an available voltage. An Idr injection module generates the Idr demand based on a direct current (DC) bus voltage, a rotational speed, and a demanded torque and selectively applies a first adjustment to the Idr demand. The Idr injection module identifies whether an improvement resulted from the first adjustment, wherein the improvement is identified based on at least one of (i) a measured current of the motor and (ii) the OOV signal. The Idr injection module selectively applies a second adjustment to the Idr demand based on whether the improvement is identified.
Abstract:
A motor control system includes a control module, a switching module, and a filtering module. The control module determines output voltages for operating a motor based on a torque demand. The switching module generates switching signals for an inverter that drives the motor. The switching module generates the switching signals based on the output voltages. The switching module generates an out-of-volts (OOV) signal according to a comparison based on the output voltages, a maximum duty cycle, and a voltage of a direct current (DC) bus that provides power to the inverter. The filtering module generates an OOV amount by filtering the OOV signal. The control module selectively limits the torque demand based on the OOV amount.
Abstract:
A power factor correction (PFC) system includes a comparison module, an adjustment module, a compensation module, and a duty cycle control module. The comparison module measures N currents having different phases, and generates (N-1) comparisons based on the N measured currents, wherein N is an integer greater than one. The adjustment module determines (N-1) time advance adjustments based on the (N-1) comparisons, respectively. The compensation module generates N compensated versions of an input alternating current (AC) line signal based on the input AC line signal, a sinusoidal reference signal, and the (N-1) time advance adjustments, wherein the sinusoidal reference signal is synchronized to the input AC line signal in phase and frequency. The duty cycle control module controls PFC switching based on the N compensated versions of the input AC line signal.
Abstract:
A power factor correction (PFC) system includes a direct current (DC) module, an error control module, an offset module, and a duty cycle control module. The DC module determines an average current value based on a plurality of current values over at least one cycle of an input alternating current (AC) line signal of the PFC system. The error control module generates an error signal based on the average current value. The offset module offsets a desired instantaneous current based on the error signal. The duty cycle control module controls at least one duty cycle of switches of the PFC system based on the offset desired instantaneous current.
Abstract:
A first rectifier diode is electrically connected between a first input terminal where an alternating current (AC) power is received and a first output terminal where a direct current (DC) power is output. A second rectifier diode is electrically connected between the first input terminal and a second output terminal. The first and second rectifier diodes rectify first and second portions of the AC power into the DC power, respectively. When switching of a plurality of power factor correction (PFC) switches is enabled, the plurality of PFC switches increases a voltage of the DC power to greater than a peak voltage of the AC power. An inductor is electrically connected between a second input terminal and two of the plurality of PFC switches. When the switching is disabled, first and second bypass diodes provide a current path past the plurality of PFC switches and the inductor.