Abstract:
An optical communication terminal is configured to operate in two different complementary modes of full duplex communication. In one mode, the terminal transmits light having a first wavelength and receives light having a second wavelength along a common free space optical path. In the other mode, the terminal transmits light having the second wavelength and receives light having the first wavelength. The terminal includes a steering mirror that directs light to and from a dichroic element that creates different optical paths depending on wavelength, and also includes spatially separated emitters and detectors for the two wavelengths. A first complementary emitter/detector pair is used in one mode, and a second pair is used for the other mode. The optical components are arranged such that adjusting an orientation of the steering mirror aligns the terminal to communication over a given free space optical link using either the first or second complementary pair.
Abstract:
An optical communication terminal is configured to operate in two different complementary modes of full duplex communication. In one mode, the terminal transmits light having a first wavelength and receives light having a second wavelength along a common free space optical path. In the other mode, the terminal transmits light having the second wavelength and receives light having the first wavelength. The terminal includes a steering mirror that directs light to and from a dichroic element that creates different optical paths depending on wavelength, and also includes spatially separated emitters and detectors for the two wavelengths. A first complementary emitter/detector pair is used in one mode, and a second pair is used for the other mode. The optical components are arranged such that adjusting an orientation of the steering mirror aligns the terminal to communication over a given free space optical link using either the first or second complementary pair.
Abstract:
Methods and systems are described for determining eye position and/or for determining eye movement based on glints. An exemplary computer-implemented method involves: (a) causing a camera that is attached to a head-mounted display (HMD) to record a video of the eye; (b) while the video of the eye is being recorded, causing a plurality of light sources that are attached to the HMD and generally directed towards the eye to switch on and off according to a predetermined pattern, wherein the predetermined pattern is such that at least two of the light sources are switched on at any given time while the video of the eye is being recorded; (c) analyzing the video of the eye to detect controlled glints that correspond to the plurality of light sources; and (d) determining a measure of eye position based on the controlled glints.
Abstract:
Disclosed herein are embodiments of a balloon-based positioning system and method. In one example embodiment, a system includes at least three balloons, with each balloon including a position-determining module (PDM) and a position-broadcasting module (PBM). Each PDM is configured for determining a position of the respective balloon and each PBM is configured for broadcasting a balloon signal containing balloon-positioning data of the respective balloon. The balloon-positioning data includes the determined position of the respective balloon and a corresponding time of broadcast.
Abstract:
Disclosed herein are embodiments of a balloon-based positioning system and method. In one example embodiment, a system includes at least three balloons, with each balloon including a position-determining module (PDM) and a position-broadcasting module (PBM). Each PDM is configured for determining a position of the respective balloon and each PBM is configured for broadcasting a balloon signal containing balloon-positioning data of the respective balloon. The balloon-positioning data includes the determined position of the respective balloon and a corresponding time of broadcast.
Abstract:
Exemplary methods and systems help provide for tracking an eye. An exemplary method may involve: causing the projection of a pattern onto an eye, wherein the pattern comprises at least one line, and receiving data regarding deformation of the at least one line of the pattern. The method further includes correlating the data to iris, sclera, and pupil orientation to determine a position of the eye, and causing an item on a display to move in correlation with the eye position.