Abstract:
A fluid impeller for applications requiring superior cavitation erosion resistance. The impeller has a body fabricated from a castable metastable austenitic steel alloy which has a chemical composition in the range according to table (I), the balance comprising iron and impurities. The preferred range is 17.5-18.5 % chromium, 0.5-0.75 % nickel, 0.45-0.55 % silicon, 0.2-0.25 % nitrogen, 15.5-16.0 % manganese and 0.1-0.12 % carbon. Quantitative testing has shown cavitation resistance of four to six times that of standard boiler feed pump materials. A method for making cavitation resistant fluid impellers is also disclosed.
Abstract:
A fluid impeller for applications requiring superior cavitation erosion resistance. The impeller has a body fabricated from a castable metastable austenitic steel alloy which has a chemical composition in the range according to table (I), the balance comprising iron and impurities. The preferred range is 17.5-18.5 % chromium, 0.5-0.75 % nickel, 0.45-0.55 % silicon, 0.2-0.25 % nitrogen, 15.5-16.0 % manganese and 0.1-0.12 % carbon. Quantitative testing has shown cavitation resistance of four to six times that of standard boiler feed pump materials. A method for making cavitation resistant fluid impellers is also disclosed.
Abstract:
A fluid impeller for applications requiring superior cavitation erosion resistance. The impeller has a body fabricated from a castable metastable austenitic steel alloy which has a chemical composition in the range according to table (I), the balance comprising iron and impurities. The preferred range is 17.5-18.5 % chromium, 0.5-0.75 % nickel, 0.45-0.55 % silicon, 0.2-0.25 % nitrogen, 15.5-16.0 % manganese and 0.1-0.12 % carbon. Quantitative testing has shown cavitation resistance of four to six times that of standard boiler feed pump materials. A method for making cavitation resistant fluid impellers is also disclosed.