Abstract:
A variable-frequency feeder control using a single oscillator to develop signals for moving materials in either one of two directions. An output signal from the oscillator is applied to a first timing circuit which develops signal pulses for driving a horizontal electromagnetic drive coil. The first timing circuit controls the duration of the signal pulses which determine the amplitude of power to drive the horizontal coil. The output signal from the oscillator is applied to a second timing circuit which developes a phase shifted signal to control the phase between the power applied to the horizontal coil and the power applied to a vertical drive coil. A third timing circuit uses the phase shifted signal to develop signal pulses for driving the vertical coil and controls the duration of the drive pulses.
Abstract:
A circuit for operating an electromagnet of a feeder or vibrator incorporate phase control for a triac used for oscillating the feeder at line frequency or at a selectable subharmonic frequency.
Abstract:
A subharmonic controller for a dual coil electromagnetic vibrator, which derives both power and timing from a conventional a.c. line, having a zero crossing detector providing pulses at twice line frequency to a phase control. The phase control provides a selectively variable pulse width and triggers a frequency divider, which in turn triggers a divide-by-two-counter. Pulses from each of the phase control, divider and counter are fed to a logic controller which generates plus and minus gate signals. The gate signals alternately fire a pair of oppositely-directed SCR's, each SCR connected in series with one of the dual coils across the a.c. line. A polarity detector and reset circuit restore the polarity information and synchronize it with the direction of conduction of the SCR's.
Abstract:
A programmable parts reorienter and feeder utilizing a fiber-optic array in a sensing head to determine an initial orientation of a part passing through a parts handling unit. The sensing head is coupled to a microprocessor that has been programmed to recognize properly oriented as well as misoriented parts. After determining the initial orientation of the part the microprocessor will direct a reorienter device to either pass the part in the first orientation, orient the part to a preferred orientation or, in some cases, reject the part.
Abstract:
A synchronized subharmonic controller for a dual coil electromagnetic vibrator, which derives both power and timing from a single phase AC line, having a trigger circuit which operates the coils at one-third the power line frequency. A timing circuit is optically coupled to alternately fire a pair of oppositely-directed SCR's with each SCR connecting one of the coils across the AC line. The optical coupling reduces feedback from the coil circuitry to the timing circuit. A pair of capacitors supply additional power to operate the coils and to reduce the peak values of current supplied by the power line.