Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1,N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communincation system in which user modules (UM) communicate with at least one node. The UM's and nodes each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.
Abstract:
An antenna selection technique is used in an RF communication system in which user modules (UM1-UM5) communicate with at least one node (N1-N2). The UM's (UM1-UM5) and nodes (N1, N2) each have multiple antennae. The combination of each UM and node antenna is evaluated at the UM. Based on at least signal quality, the UM (UM1-UM5) selects its antenna and the best node antenna for use. An alternate antenna is selected if a person is determined to be present in a predetermined area adjacent a UM (UM1-UM5) corresponding to a predetermined RF power level.