Abstract:
Ein Prozessor 13 umfasst: einen Bereichs-Extraktions-Abschnitt 45, der dazu eingerichtet ist, eine Eingabe eines ersten Bildsignals zu empfangen, das als Ergebnis des Erzeugens eines Bildes eines Objektes erhalten wird, das mit erstem Schmalbandlicht beleuchtet wird, das eine Wellenlänge umfasst, die von Blut in einem grünen Wellenlängenband minimal absorbiert wird, wobei das Bild des Objektes eine Blutungsstelle enthält, und einen Bloodpool-Bereich zu extrahieren, der eine Blutkonzentration aufweist, die kleiner ist als eine Blutkonzentration der Blutungsstelle in einem Bereich, der das Blut im ersten Bildsignal darstellt; und einen Helligkeitswert-Erhöhungs-Abschnitt 46, der dazu eingerichtet ist, einen Helligkeitswert des Bloodpool-Bereichs in entweder dem ersten Bildsignal oder dem zweiten Bildsignal zu erhöhen, das als Ergebnis des Erzeugens eines Bildes des Objektes erhalten wird, das mit zweitem Schmalbandlicht beleuchtet wird, dessen Wellenlänge kürzer ist und das von dem Blut mehr absorbiert wird als das erste Schmalbandlicht.
Abstract:
Ein Lebendkörper-Beobachtungssystem umfasst eine Lichtquelleneinheit, die ausgestaltet ist, in der Lage zu sein, Licht in einem ersten Wellenlängenband als Schmalbandlicht zu emittieren, das zu einem Rotbereich in einem sichtbaren Bereich gehört, Licht in einem zweiten Wellenlängenband als Schmalbandlicht zu emittieren, das zu einer Seite längerer Wellenlänge gehört als das erste Wellenlängenband, und Licht in einem dritten Wellenlängenband als Licht zu emittieren, das zu einer Seite kürzerer Wellenlänge gehört als das erste Wellenlängenband, eine Steuereinheit, die ausgestaltet ist, eine Steuerung auszuführen, um Beleuchtungslicht, umfassend das Licht jeweils in dem ersten bis dritten Wellenlängenband, zu emittieren, eine erste Bildaufnahmeeinrichtung, die ausgestaltet ist, eine Empfindlichkeit in jedem, dem ersten und dem dritten Wellenlängenband, aufzuweisen, eine zweite Bildaufnahmeeinrichtung, die ausgestaltet ist, eine Empfindlichkeit in dem zweiten Wellenlängenband
Abstract:
Provided is an observation apparatus (100) comprising a light source (3) that irradiates a subject (X) with illumination light and special light that acts on a specific region of the subject (X); a return-light-image generating portion (61) that generates a return-light image (G1) by capturing return light coming from the subject (X) due to irradiation with the illumination light; a special-light-image generating portion (62) that generates a special-light image (G2) by capturing signal light coming from the subject (X) due to irradiation with the special light; an extraction portion (63) that extracts the specific region from the special-light image (G2); and an enhancement processing portion (64) that performs enhancement processing, which is based on return-light image information, on the return-light image (G1), in a region corresponding to the extracted specific region.
Abstract:
Provided is a fluorescence observation apparatus (100) including a light source (3) that radiates illumination light and excitation light onto a subject; a return-light-image generating portion (61) and a fluorescence-image generating portion (62) that generate a return-light image (G1) and a fluorescence image (G2) of the subject, respectively; a fluorescence detecting portion (63) that detects a fluorescence region in the fluorescence image (G2); a return-light-image adjusting portion (65) that adjusts gradation values of the return-light image (G1); a superimposed-image generating portion (66) that generates a superimposed image (G3) by using the return-light image (G1'), in which the gradation values have been adjusted, and the fluorescence image (G2); and a coefficient setting portion (64) that sets, in the case in which the fluorescence region is detected by the fluorescence detecting portion (63), a degree-of-adjustment, by which the gradation values of the return-light image (G1) are adjusted by the return-light-image adjusting portion (65), so that the gradation values of the return-light image (G1) are decreased as compared with the case in which the fluorescence region is not detected by the fluorescence detecting portion (63).
Abstract:
A medical apparatus of the present invention comprises: a storing section in which information concerning a drug kinetics in a living body is stored in advance for each of plural kinds of fluorescent drugs; an arithmetic processing section that acquires diagnosis start time corresponding to a desired fluorescent drug based on information stored in the storing section, information concerning a target region of an object to be examined to which the desired fluorescent drug is administered, information concerning a method of administering the desired fluorescent drug to the target region, and information concerning administration start time of the desired fluorescent drug; and a light source control section that performs control to stop radiation of excitation light for exciting the desired fluorescent drug in at least a time period from the administration start time until the diagnosis start time is reached and performs control to radiate the excitation light based on the diagnosis start time.
Abstract:
PROBLEM TO BE SOLVED: To allow an operator to reliably and clearly recognize the presence of a lesion part within an observation visual field.SOLUTION: A fluorescence observation device 1 is provided with: an imaging element 19 for acquiring a fluorescence image by imaging fluorescence generated in a subject A by being irradiated with excitation light from an excitation light source 3; a sensitivity adjustment part 23 for setting sensitivity of the imaging element 19 to the fluorescence on the basis of a gradation value of the fluorescence image acquired by the imaging element 19; an extraction part 25 for extracting an area that has a larger gradation value than a prescribed threshold value from the fluorescence image acquired by the imaging element 19 by the sensitivity set by the sensitivity adjustment part 23; a notification part 25 for presenting information indicating the presence of an area extracted by the extraction part 25 to an operator; a display part 7 for displaying the fluorescence image; and a display switching part 24 for causing the display part 7 to display the fluorescence image when the sensitivity set by the sensitivity adjustment part 23 to the imaging element 19 is the predetermined threshold value or lower, and causing the notification part 25 to present information when the sensitivity is greater than the predetermined threshold value.
Abstract:
PROBLEM TO BE SOLVED: To enable reliably notifying a user of the presence of a fluorescent area in an observation visual field irrespective to differences of observation conditions.SOLUTION: A fluorescent observation device 1 comprises: a light source 3 for irradiating an observation object X with reference light and excitation light; a fluorescent image generation part 62 for generating a fluorescent image G2 by imaging fluorescence generated in the observation object X by irradiation of the excitation light; a reference image generation part 61 for generating a reference image G1 by imaging return light that is returned from the observation object X by irradiation of the reference light; an image composition part 65 for generating a composite image G by superposing the fluorescent image G2 generated by the fluorescent image generation part 62 on the reference image G1 generated by the reference image generation part 61; a determination part 63 for comparing a luminance value in each position in the reference image G1 to a predetermined threshold and determining the presence and absence of a position in which a luminance value is equal to or less than the threshold; and a notification part 65 that notifies, when a position with a luminance value equal to or less than the predetermined threshold is determined as being present by the determination part 63, a user of the presence of the position.
Abstract:
PROBLEM TO BE SOLVED: To provide a fluorescent observation device, capable of suitably interpreting the original characteristics such as the position and the luminance value of a high-brightness region by recognizing the reliability of characteristics of the high brightness region displayed on a current image.SOLUTION: A fluorescent observation device 1 includes: a fluorescent image generating part 62 for generating a fluorescent image G2 by photographing fluorescent light generated in an observation object X; an extract part 63 for extracting the position of a high brightness region having a luminance value equal to or higher than a predetermined threshold value in the fluorescent image G2; a storage part 64 for storing the position of the high brightness region; a detecting part 65 for detecting a variation of the physical amount which may be a factor in changing the characteristics of the high brightness region from the time when the position of the high brightness region is extracted by the extract part 63; a reliability calculating part 65 for calculating the reliability of the characteristics of the high brightness region on the basis of the detected variation; and a display image generating part 66 for generating a display image G3 to which a display mode depending on the reliability calculated by the reliability calculating part 65 is imparted at the position of the high brightness region stored in the storage part 64.
Abstract:
PROBLEM TO BE SOLVED: To highly precisely remove dependence on observation distance/observation angles residual in a divided image as a result of different causes, in accordance with those causes.SOLUTION: A fluorescence observation device 100 includes: a fluorescent image acquisition unit 18 and a reference image acquisition unit 17 that acquire the fluorescent image or the reference image of a subject A; a divided image generation unit 64 that divides an image based on the fluorescent image by an image based on the reference image, and generates a divided image; a display unit 20 that displays a final fluorescent image based on the divided image; a correction processing unit 65 that executes correction processing to at least one of the reference image and the fluorescent image and/or the divided image, prior to the generation of the divided image by the divided image generation unit 64 or the display of the final fluorescent image by the display unit 20; an observation condition determination unit 7 that determines observation conditions for the subject A; and a correction condition setting unit 66 that sets parameters for the correction processing by the correction processing unit 65, in accordance with the observation conditions determined by the observation condition determination unit 7.