Abstract:
A method of using a ciphering key in a mobile station (18) from a first base station (12) in a first cellular communications system controlled by a first mobile switching control (10) station to a second base station in a second, different cellular system controlled by a second mobile switching control station is described. The method comprises generating for the mobile station a cipher key for use by the mobile station during communication in the second cellular communications system. The cipher key is generated by the mobile station from a private key assigned to the mobile station for the second cellular communications system and from a random number generated by the second cellular communications system. The cipher key is then communicated to the first mobile system and a private long code is generated for use by the mobile station during communication in the first cellular communications system.
Abstract:
A method and apparatus for creating a dynamic GeoFence area by determining an instant reference point using a first set of pseudorange measurements received by a GeoFence device, defining the dynamic GeoFence area referenced to the instant reference point, determining a position fix using a second set of pseudorange measurements, and comparing the position fix to the dynamic GeoFence area. In one aspect, an alert message based on the comparison results is presented to a user.
Abstract:
A method for controlling a wireless terminal operating in a hibernation cycle alternating between a wake mode and a hibernation mode includes communicating with a first wireless network during a first waking period having a first duration, and with a second wireless network during a second waking period following the first waking period. The second waking period is extended to a second duration, greater than the first duration, responsively to detecting that the second wireless network is different from the first wireless network. Network information relating to the second wireless network is received during the second waking period.
Abstract:
A network operator identifier is used to uniquely identify each network operator to support international roaming. The network operator identifier includes (1) a Mobile Country Code (MCC) that identifies the country in which a network operator belongs and (2) a Network Operator Code (NOC), which may be a Mobile Network Code (MNC), that distinguishes network operators within a given MCC. Each network operator is assigned a unique combination of MCC and NOC that distinctly identifies the network operator, and the network operator identifier can be stored in a single entry in a preferred roaming list. The base stations of each network operator broadcast the network operator identifier in signaling messages. A mobile station receives a signaling message from a base station, obtains the network operator identifier, searches its preferred roaming list for an entry with the network operator identifier, and determines whether or not the current CDMA network is accessible.
Abstract:
A method and apparatus for creating a dynamic GeoFence area by determining an instant reference point using a first set of pseudorange measurements received by a GeoFence device, defining the dynamic GeoFence area referenced to the instant reference point, determining a position fix using a second set of pseudorange measurements, and comparing the position fix to the dynamic GeoFence area. In one aspect, an alert message based on the comparison results is presented to a user.
Abstract:
Apparatus and methods of differentiated data session access on a wireless communication device and dynamic source determination of provisioning information on a wireless communication device are disclosed. User Identity Modules (UIMs) are provisioned such that network-service applications resident on the wireless device are associated with a corresponding application profile within the UIM. Each networkservice application has a corresponding network address identifier defined within the user profile. The network address associated with the identifier is used to establish a data session for the corresponding network service application. By providing for application-specific network addresses, service providers and/or network operators can differentiate between what services a user is accessing during a data session. In addition, the UIMs may be provisioned with priority category identifiers that allow the associated network-service application to be prioritized for data session establishment.
Abstract:
A method of effecting handoff of a mobile station from a first base station in a first cellular communications system (46) controlled by a first mobile switching control station to a second base station in a second, different cellular system (48) controlled by a second mobile switching control station is described. The method comprises measuring at the mobile station a parameter of a signal transmitted by said first base station and a parameter of a signal transmitted by said second base station. When the parameters reach a predetermined condition, a signal quality message is communicated from the mobile station via the first base station to said first mobile switching control station, which responds by generating information for a channel request message for the second mobile switching control station and transmitting the same to the mobile station.
Abstract:
A tracking unit operably coupled to mobile equipment is provided. The tracking unit is capable of using a pilot channel for CDMA networks, a broadcast channel for GSM networks or the like, to determine that the tracking unit has remained relatively stationary. The tracking unit determines it has remained relatively stationary by determining that it is receiving the same radio frequency signals at approximately the same strength as it previously received.
Abstract:
A method of authenticating a mobile station (18) from a first base station (12) in a first cellular communications system controlled by a first mobile switching control station (10) to a second base station (14) in a second, different cellular system controlled by a second mobile switching control station is described. The method comprises generating at the second cellular communication system an authentication code as the result of applying an algorithm to a private key assigned to the mobile station for the second cellular communications system and a random number generated by the second cellular communications system. An authentication code is also generated at the first cellular communication system as the result of applying an algorithm to the private key and the random number. The authentication code generated at the first cellular communication system is then transmitted to a mobile station in a data packet, and, from there, the authentication code is transmitted to the second cellular communication system. The authentication code generated at the first cellular communications system is then compared with the authentication code generated at the second cellular communications system.