Abstract:
A magnetic flowmeter flowtube assembly includes a conduit having a first end with a first flange and a second end with a second flange. A fluoropolymer liner is disposed within and extending through the first flange, the conduit and the second flange. A first lining protector is mounted to the first flange and a second lining protector mounter to the second flange. A first spring-energized seal is disposed between the first lining protector and the fluoropolymer liner. A second spring-energized seal is disposed between the second lining protector and the fluoropolymer liner.
Abstract:
A magnetic flowmeter flowtube assembly includes a conduit with a first end and a second end. A first neck flange is coupled to the first end of the conduit and has an inside diameter with a first notch extending radially outwardly therefrom. A second neck flange is coupled to the second end and has an inside diameter with a second notch extending radially outwardly therefrom. A fluoropolymer liner is disposed within and extends through the first neck flange, the conduit and the second neck flange. A pair of electrodes is mounted relative to the liner to measure a voltage induced within a process fluid flowing through the liner. A first spring-energized seal ring is disposed in the first notch and a second spring-energized seal ring disposed in the second notch. A method of sealing a magnetic flowmeter having a fluoropolymer liner is also provided.
Abstract:
A magnetic flowmeter flowtube assembly includes a conduit with a first end and a second end. A first neck flange is coupled to the first end of the conduit and has an inside diameter with a first notch extending radially outwardly therefrom. A second neck flange is coupled to the second end and has an inside diameter with a second notch extending radially outwardly therefrom. A fluoropolymer liner is disposed within and extends through the first neck flange, the conduit and the second neck flange. A pair of electrodes is mounted relative to the liner to measure a voltage induced within a process fluid flowing through the liner. A first spring-energized seal ring is disposed in the first notch and a second spring-energized seal ring disposed in the second notch. A method of sealing a magnetic flowmeter having a fluoropolymer liner is also provided.
Abstract:
A magnetic flowmeter includes at least one coil configured to generate a magnetic field within a process fluid flow. A pair of electrodes is configured to detect an electromotive force within the flowing process fluid in response to the magnetic field. Measurement circuitry is coupled to the pair of electrodes and is configured to provide an indication of the detected electromotive force. A processor is coupled to the measurement circuitry and configured to receive the indication of the detected electromotive force and determine a flow-related output based on the detected electromotive force. A diagnostics component is configured to analyze a number of successive parameters of the magnetic flowmeter in order to provide an indication of a detected entrained fluid.
Abstract:
A magnetic flowmeter flowtube assembly includes a conduit having a first end with a first flange and a second end with a second flange. A fluoropolymer liner is disposed within and extending through the first flange, the conduit and the second flange. A first lining protector is mounted to the first flange and a second lining protector mounter to the second flange. A first spring-energized seal is disposed between the first lining protector and the fluoropolymer liner. A second spring-energized seal is disposed between the second lining protector and the fluoropolymer liner.