Abstract:
Additional information embedded in content data can be corrected with reduced load to hardware. A predetermined amount of content data entered is temporarily stored in buffer means, and from the content data temporarily stored in the buffer means, additional information embedded in the content is detected. When the additional information detected indicates that the content data can be recorded, the content data is recorded on a predetermined medium, and when the additional information indicates that recording of the content data is inhibited, no recording is performed onto the medium. Moreover, when correction of the additional information is required, the correction is made on the data stored in the buffer means.
Abstract:
A data record medium on which a digital signal has been recorded is disclosed, the digital signal being composed of main data and a sub code, the sub code having time information representing reproduction elapsed time, the sub code being recorded in association with the main data, wherein information that represents the reproduction elapsed time of the sub code is represented with a binary coded decimal number and address information in synchronization with the time information of the main data is represented with a binary number, the address information being contained in the main data.
Abstract:
A data record medium on which a digital signal has been recorded is disclosed, the digital signal being composed of main data and a sub code, the sub code having time information representing reproduction elapsed time, the sub code being recorded in association with the main data, wherein information that represents the reproduction elapsed time of the sub code is represented with a binary coded decimal number and address information in synchronization with the time information of the main data is represented with a binary number, the address information being contained in the main data.
Abstract:
Data is recorded on packet basis to a track of an optical recording medium and the data is pseudo-erased by erasing contents information of the track having the data. Information indicating the end position of the packet containing the data is recorded on the optical recording medium and a new data is recorded to the track where the data has been pseudo-erased in accordance with the information indicating the end position of the packet.
Abstract:
Formatting is applied only to a local area which is a part of the entire recordable area of a rewritable disk and which does not include portions where a lead-in area and a lead-out area are to be formed. In other words, only the required minimum area is formatted. The formatted area is extended afterwards as required. Thus, disk formatting is shortened.
Abstract:
A data record medium having an address representing portion of a predetermined number of bits for representing time information composed of minutes, seconds, and frames in a binary coded decimal notation is disclosed, wherein addresses represented in a binary notation instead of the binary coded decimal notation are placed in the address representing portion.
Abstract:
Data is recorded on packet basis to a track of an optical recording medium and the data is pseudo-erased by erasing contents information of the track having the data. Information indicating the end position of the packet containing the data is recorded on the optical recording medium and a new data is recorded to the track where the data has been pseudo-erased in accordance with the information indicating the end position of the packet.
Abstract:
A data record medium on which a digital signal has been recorded is disclosed, the digital signal being composed of main data and a sub code, the sub code having time information representing reproduction elapsed time, the sub code being recorded in association with the main data, wherein information that represents the reproduction elapsed time of the sub code is represented with a binary coded decimal number and address information in synchronization with the time information of the main data is represented with a binary number, the address information being contained in the main data.
Abstract:
The present invention facilitates identification of whether or not an optical disc is a optical disc of which recording capacity is enlarged. A synchronization pattern of ATIP information embedded into guide grooves irradiated with a light spot is made to be different between a high density optical disc and a standard density optical disc of which recording capacity is not enlarged. Specifically, while the synchronization pattern of the standard density optical disc is preferably made into "3T+1T+1T+3T" (where "T" represents a minimum channel bit of a signal obtained by reading a positional information), the synchronization pattern of the high density optical disc is preferably made into "3T+3T+1T+1T" for example. By reading the ATIP information and recognizing the synchronization pattern thereof, it can be easily and quickly identified whether the optical disc has a standard density or a high density.