Micro-electro-mechanical device with a shock-protected tiltable structure

    公开(公告)号:US11655140B2

    公开(公告)日:2023-05-23

    申请号:US17126929

    申请日:2020-12-18

    Abstract: A micro-electro-mechanical device is formed by a fixed structure having a cavity. A tiltable structure is elastically suspended over the cavity and has a main extension in a tiltable plane and is rotatable about a rotation axis parallel to the tiltable plane. A piezoelectric actuation structure includes first and second driving arms carrying respective piezoelectric material regions and extending on opposite sides of the rotation axis. The first and the second driving arms are rigidly coupled to the fixed structure and are elastically coupled to the tiltable structure. During operation, a stop structure limits movements of the tiltable structure with respect to the actuation structure along a planar direction perpendicular to the rotation axis. The stop structure has a first planar stop element formed between the first driving arm and the tiltable structure and a second planar stop element formed between the second driving arm and the tiltable structure.

    Microelectromechanical mirror device with piezoelectric actuation and improved opening angle

    公开(公告)号:US12270990B2

    公开(公告)日:2025-04-08

    申请号:US17727117

    申请日:2022-04-22

    Abstract: A microelectromechanical mirror device includes a fixed structure defining a cavity, a tiltable structure elastically suspended above the cavity and carrying a reflecting surface, and having a main extension in a horizontal plane. A first pair of driving arms carry respective piezoelectric material regions that are biased to cause a rotation of the tiltable structure around a first rotation axis parallel to a first horizontal axis of the horizontal plane, and elastically coupled to the tiltable structure. Elastic suspension elements that couple the tiltable structure to the fixed structure at the first rotation axis are stiff with respect to movements out of the horizontal plane and yielding with respect to torsion around the first rotation axis, and further extend between the tiltable structure and the fixed structure. The elastic suspension elements have an asymmetrical arrangement on opposite sides of the tiltable structure along the first rotation axis.

    Microelectromechanical mirror device with piezoelectric actuation and piezoresistive sensing having self-calibration properties

    公开(公告)号:US12242051B2

    公开(公告)日:2025-03-04

    申请号:US17745186

    申请日:2022-05-16

    Abstract: A microelectromechanical mirror device has, in a die of semiconductor material: a fixed structure defining a cavity; a tiltable structure carrying a reflecting region elastically suspended above the cavity; at least a first pair of driving arms coupled to the tiltable structure and carrying respective piezoelectric material regions which may be biased to cause a rotation thereof around at least one rotation axis; elastic suspension elements coupling the tiltable structure elastically to the fixed structure and which are stiff with respect to movements out of the horizontal plane and yielding with respect to torsion; and a piezoresistive sensor configured to provide a detection signal indicative of the rotation of the tiltable structure. At least one test structure is integrated in the die to provide a calibration signal indicative of a sensitivity variation of the piezoresistive sensor in order to calibrate the detection signal.

    Biaxial resonant microelectromechanical mirror structure with piezoelectric actuation having improved characteristics

    公开(公告)号:US11520138B2

    公开(公告)日:2022-12-06

    申请号:US16827282

    申请日:2020-03-23

    Abstract: A microelectromechanical structure includes a body of semiconductor material having a fixed frame internally defining a cavity, a mobile mass elastically suspended in the cavity and movable with a first resonant movement about a first rotation axis and with a second resonant movement about a second rotation axis, orthogonal to the first axis. First and second pairs of supporting elements, extending in cantilever fashion in the cavity, are rigidly coupled to the frame, and are piezoelectrically deformable to cause rotation of the mobile mass about the first and second rotation axes. First and second pairs of elastic-coupling elements are elastically coupled between the mobile mass and the first and the second pairs of supporting elements. The first and second movements of rotation of the mobile mass are decoupled from one another and do not interfere with one another due to the elastic-coupling elements of the first and second pairs.

Patent Agency Ranking