Abstract:
In an embodiment, a method includes: providing a voltage setpoint to a voltage converter; generating an output voltage at a voltage rail with the voltage converter based on the voltage setpoint; when the voltage setpoint is transitioning from a first voltage setpoint to a second voltage setpoint that has a lower magnitude than the first voltage setpoint, providing a first constant current to a first node coupled to a control terminal of an output transistor to turn on the output transistor, where the output transistor includes a source terminal coupled to a first terminal of a first resistor, and where a current path of the output transistor is coupled to the voltage rail; and turning off the output transistor after the output voltage reaches the target output voltage corresponding to the second voltage setpoint.
Abstract:
In an embodiment, a method includes: providing a voltage setpoint to a voltage converter; generating an output voltage at a voltage rail with the voltage converter based on the voltage setpoint; when the voltage setpoint is transitioning from a first voltage setpoint to a second voltage setpoint that has a lower magnitude than the first voltage setpoint, providing a first constant current to a first node coupled to a control terminal of an output transistor to turn on the output transistor, where the output transistor includes a source terminal coupled to a first terminal of a first resistor, and where a current path of the output transistor is coupled to the voltage rail; and turning off the output transistor after the output voltage reaches the target output voltage corresponding to the second voltage setpoint.
Abstract:
A converter circuit includes first and second electronic switches coupled at an intermediate node, with an inductor coupled between the intermediate node and an output node. Switching drive control circuitry causes the first and the second electronic switch to switch between a conductive state and a non-conductive state. The drive control circuitry includes a first feedback signal path to control switching of the first and the second electronic switch as a function of the difference between a feedback signal indicative of the signal at the output node and a reference value. A second feedback signal path includes a low-pass filter coupled to the output node and configured to provide a low-pass filtered feedback signal resulting from low-pass filtering of the output signal. The second feedback signal path compensates the feedback signal as a function of the difference between the low-pass filtered feedback signal and a respective reference value.
Abstract:
A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Abstract:
An energy-scavenging interface includes first and second switches connected in series between an input and reference, and third and fourth switches connected in series between the input and an output. A control circuit closes the first and second switches and opens the third switch for a first time interval to store charge in a storage element. A scaled copy of a peak value of the charging current is obtained. The control circuit then opens the first switch and closes the third and fourth switches to generate an output signal as long as the value in current of the output signal is higher than the value of said scaled copy of the peak value.
Abstract:
An energy-scavenging interface includes first and second switches connected in series between an input and reference, and third and fourth switches connected in series between the input and an output. A control circuit closes the first and second switches and opens the third switch for a first time interval to store charge in a storage element. A scaled copy of a peak value of the charging current is obtained. The control circuit then opens the first switch and closes the third and fourth switches to generate an output signal as long as the value in current of the output signal is higher than the value of said scaled copy of the peak value.
Abstract:
A step-detection device for detecting the steps taken by a user (for counting) includes a transducer that generates an electrical transduction signal as a function of step mechanical activity. An energy scavenging system, coupled to the transducer, generates electrical energy starting from the mechanical activity in order to supply an output supply signal in response to the electrical transduction signal. A voltage-regulator generates a regulated supply signal from the output supply signal. A transmission stage, supplied by the voltage-regulating stage, initiates a wireless transmission indicative of step detection, that wireless transmission causing an increment of a step count at a remote location. The transmission stage makes the wireless transmission when the regulated supply signal exceeds a first threshold. Completion of the wireless transmission is indicative of the occurrence of a step.
Abstract:
A step-counter device detects and counts user steps. The device includes a transducer configured to generate an electrical transduction signal in response to user stepping. An energy-scavenging system is coupled to the transducer to generate a power supply voltage in response to the electrical transduction signal. A processing unit is powered by the power supply voltage. The processing unit is further configured to sense the electrical transduction signal and determine whether a user step has occurred and in response to that determination increment a step counter.
Abstract:
A sensor circuit for a power FET monitors current flowing through the FET and includes a regulator circuit regulating a first current flowing through a sense resistance, so voltage drop at the sense resistance corresponds to voltage drop between terminals of the FET. A measurement circuit provides a second current corresponding (or being proportional) to the first current. A first switch selectively applies the second current to a resistor based on a first control signal, and a low pass filter generates a low-pass filtered signal by filtering voltage at the resistor. A voltage follower generates a replica of the low-pass filtered signal, and a second switch selectively applies the replica to the resistor. When the FET is closed, a control circuit closes the first switch and opens the second electronic switch. When the FET is opened, the control circuit opens the first electronic switch and closes the second electronic switch.
Abstract:
Charge pump stages are coupled between flying capacitor pairs and arranged in a cascaded between a bottom voltage line and an output voltage line. Gain stages apply pump phase signals having a certain amplitude to the charge pump stages via the flying capacitors. A feedback signal path from the output voltage line to the bottom voltage line applies a feedback control signal to the bottom voltage line. Power supply for the gain stages is provided by a voltage of the feedback control signal in order to control the amplitude of the pump phase signals. An asynchronous logic circuit generates the switching drive signals for the gain stages with a certain switching frequency which is a function of a logic supply voltage derived from the voltage of the feedback control signal.