Abstract:
A rheologically controlled glass lubricant for hot metal working comprises a glass powder, a binder, a rheological agent, and a weetting and viscosity modifier. These materials may be dispersed in a carrier. The lubricant is made by mixing the constituent elements, milling the mixture, and stabilizing the milled mixture. The lubricant can be used in a forging operation by coating a metal part with the lubricant, heating the coated part, placing the coated heated part in a forge, and rapidly applying sufficient pressure to deform the coated metal part into a desired shape.
Abstract:
A rheologically controlled glass lubricant for hot metal working comprises a glass powder, a binder, a rheological agent, and a weetting and viscosity modifier. These materials may be dispersed in a carrier. The lubricant is made by mixing the constituent elements, milling the mixture, and stabilizing the milled mixture. The lubricant can be used in a forging operation by coating a metal part with the lubricant, heating the coated part, placing the coated heated part in a forge, and rapidly applying sufficient pressure to deform the coated metal part into a desired shape.
Abstract:
A rheologically controlled glass lubricant for hot metal working comprises a glass powder, a binder, a rheological agent, and a weetting and viscosity modifier. These materials may be dispersed in a carrier. The lubricant is made by mixing the constituent elements, milling the mixture, and stabilizing the milled mixture. The lubricant can be used in a forging operation by coating a metal part with the lubricant, heating the coated part, placing the coated heated part in a forge, and rapidly applying sufficient pressure to deform the coated metal part into a desired shape.