Abstract:
An improved method is described for repairing Co-base superalloy gas turbine engine components by applying a mixture of base alloy powder and base alloy powder with a melting point depressant to the surface of the component and heating at 2250-2300 DEG F to diffuse the melting point depressant isothermally into the base alloy. A protective coating is then applied, during which a heating cycle which ages the base material is used. The resultant component has high temperature creep properties which are significantly better than achieved using the prior art process. The same temperature cycle is also useful in the initial heat treatment of Co-base superalloys, and can also be used for rejuvenation of components which have experienced extensive exposure to engine operating conditions.
Abstract:
An improved method is described for repairing Co-base superalloy gas turbine engine components by applying a mixture of base alloy powder and base alloy powder with a melting point depressant to the surface of the component and heating at 2250-2300 °F to diffuse the melting point depressant isothermally into the base alloy. A protective coating is then applied, during which a heating cycle which ages the base material is used. The resultant component has high temperature creep properties which are significantly better than achieved using the prior art process. The same temperature cycle is also useful in the initial heat treatment of Co-base superalloys, and can also be used for rejuvenation of components which have experienced extensive exposure to engine operating conditions.
Abstract:
L'invention concerne un procédé amélioré de réparation de constituants de moteur à turbine à gaz en superalliage à base de cobalt, consistant à appliquer un mélange d'une poudre d'alliage de base et d'une poudre d'alliage de base additionnée d'un agent d'abaissement du point de fusion sur la surface du constituant, puis à chauffer entre 2250 et 2300 °F afin de diffuser l'agent d'abaissement du point de fusion isothermiquement dans l'alliage de base. Ensuite on procède à une étape d'application d'un revêtement protecteur pendant laquelle on utilise un cycle de chauffage faisant vieillir le matériau de base. Le constituant obtenu présente des propriétés de fluage à haute température sensiblement supérieures à celles obtenues par le procédé de l'art antérieur. Le même cycle de température est également utile dans le traitement thermique initial de superalliage à base de cobalt, et on peut également l'utiliser dans la régénération de constituants ayant subi une exposition prolongée aux conditions de service du moteur.