Abstract:
In this way, plumes of oil and gas in the oceanic water column can be detected from a substantial distance using a highly sensitive sensor (2) and then characterized thoroughly using a less sensitive sensor (3).
Abstract:
A measuring system for in-situ measurements down a well (1) by a spectrometer (4) is provided. The spectrometer (4) includes a radiation source (5) and a detector (6). A probe (15) optically connected to the spectrometer (4) and includes an optical pathway (7) for transmission of a radiation from the radiation source (5) and at least a second optical pathway for transmission of a characteristic radiation from a sample to the detector (6). A positioner is provided to position the probe (15) near a side surface (11) of the borehole (3) and to optically couple the optical pathways (7) to the side surface (11), wherein the probe (15) is traversable up and down the well (1) by way of a guide operatively connected to the probe (15) and to a fixed location at the wellhead. By use of the apparatus and method a concentration of methane or other substance of interest is obtained, and thereby, a potential production of a coal bed methane formation is obtained.
Abstract:
In this way, plumes of oil and gas in the oceanic water column can be detected from a substantial distance using a highly sensitive sensor (2) and then characterized thoroughly using a less sensitive sensor (3).
Abstract:
A measuring system for in-situ measurements down a well (1) by a spectrometer (4) is provided. The spectrometer (4) includes a radiation source (5) and a detector (6). A probe (15) optically connected to the spectrometer (4) and includes an optical pathway (7) for transmission of a radiation from the radiation source (5) and at least a second optical pathway for transmission of a characteristic radiation from a sample to the detector (6). A positioner is provided to position the probe (15) near a side surface (11) of the borehole (3) and to optically couple the optical pathways (7) to the side surface (11), wherein the probe (15) is traversable up and down the well (1) by way of a guide operatively connected to the probe (15) and to a fixed location at the wellhead. By use of the apparatus and method a concentration of methane or other substance of interest is obtained, and thereby, a potential production of a coal bed methane formation is obtained.
Abstract:
A measuring system for in-situ measurements down a well (1) by a spectrometer (4) is provided. The spectrometer (4) includes a radiation source (5) and a detector (6). A probe (15) optically connected to the spectrometer (4) and includes an optical pathway (7) for transmission of a radiation from the radiation source (5) and at least a second optical pathway for transmission of a characteristic radiation from a sample to the detector (6). A positioner is provided to position the probe (15) near a side surface (11) of the borehole (3) and to optically couple the optical pathways (7) to the side surface (11), wherein the probe (15) is traversable up and down the well (1) by way of a guide operatively connected to the probe (15) and to a fixed location at the wellhead. By use of the apparatus and method a concentration of methane or other substance of interest is obtained, and thereby, a potential production of a coal bed methane formation is obtained.
Abstract:
This invention relates to a method and system of determining gas content, critical desorption pressure, and/or other reservoir and operational variables, referred to as production factors, for coalbed natural gas wells. In particular, this invention relates to a method and system for measuring a partial pressure of methane or a predictor substance or a methane concentration for a coalbed natural gas reservoir and determining production factors therefrom.
Abstract:
The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas.
Abstract:
In this way, plumes of oil and gas in the oceanic water column can be detected from a substantial distance using a highly sensitive sensor (2) and then characterized thoroughly using a less sensitive sensor (3).
Abstract:
A measuring system for in-situ measurements down a well (1) by a spectrometer (4) is provided. The spectrometer (4) includes a radiation source (5) and a detector (6). A probe (15) optically connected to the spectrometer (4) and includes an optical pathway (7) for transmission of a radiation from the radiation source (5) and at least a second optical pathway for transmission of a characteristic radiation from a sample to the detector (6). A positioner is provided to position the probe (15) near a side surface (11) of the borehole (3) and to optically couple the optical pathways (7) to the side surface (11), wherein the probe (15) is traversable up and down the well (1) by way of a guide operatively connected to the probe (15) and to a fixed location at the wellhead. By use of the apparatus and method a concentration of methane or other substance of interest is obtained, and thereby, a potential production of a coal bed methane formation is obtained.
Abstract:
A measuring system for in-situ measurements down a well (1) by a spectrometer (4) is provided. The spectrometer (4) includes a radiation source (5) and a detector (6). A probe (15) is optically connected to the spectrometer (4) and includes an optical pathway (7) for transmission of a radiation from the radiation source (5) and at least a second optical pathway for transmission of a characteristic radiation from a sample to the detector (6). A positioner is provided to position the probe (15) near a side surface (11) of the borehole (3) and to optically couple the optical pathways (7) to the side surface (11), wherein the probe (15) is traversable up and down the well (1) by way of a guide operatively connected to the probe (15) and to a fixed location at the wellhead. By use of the apparatus and method a concentration of methane or other substance of interest is obtained, and thereby, a potential production of a coal bed methane formation is obtained.